• Title/Summary/Keyword: mineral sintered body

Search Result 4, Processing Time 0.02 seconds

Development of Amalgamated Septic Tank using Mineral Sintered Body (광물 소결체를 이용한 합병정화조 개발에 관한 연구)

  • 김광수;김영훈;강헌찬
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.56-62
    • /
    • 2000
  • This study was introduced an amalgamated septic tank system using mineral sintered body was made from non-metallic minerals with a ability being attached or accelerating a vitality of soil microorganism for the effective wastewater treatment. Experimentally, we made an amalgamated septic tank appling anaerobic-aerobic process experimental facilities to two personal houses for handling a residental sewage directly on a small scale from the place of origin. The results are shown as follows; The COD\ulcorner and BOD of effluent were about 10 mg/l after the treatments and T-N removal efficiency was 60-70%. Moreover these results suggested the possibility of denitrification without adding organics and more than 80% of T-P removal also showed the possibility of wastewater treatment biologically.

  • PDF

Effects of viscosities of slip on slip casting and properties of sintered bodies of cordierite (Slip의 점도가 slip casting 및 casting 및 cordierite 소결체의 특성에 미치는 영향)

  • Baik Yong-Hyuck;Chang Pok-Kie;Kwak Hyo-Sup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.202-207
    • /
    • 2005
  • We have investigated the relationship between a viscosity of the slip prepared from kaolin, quartz, $Mg(OH)_2$, etc and its influence on the speed of slip casting and the microsturcture of a sintered body. The speed of slip casting decreases as a viscosity of a slip decreases. The optimized viscosity range of a slip was found to be around $3.0\~17.0\;cP$. By careful controlling a viscosity of slip, homogeneous microstructure of outer surface layers, inner surface layers, intermediate layers, and inside layers were obtained by casting process. The specimen sintered at $1350^{\circ}C$ consists of a cordierite crystalline phase only as a constituent mineral.

Utilization of Mine failings from the Jeonju-Il Mine (전주일(全州一) 금속광산(金屬鑛山) 폐광미(廢鑛尾)의 활용(活用) 방안(方案) 연구(硏究))

  • Jeong, Soo-Bok;Chae, Yeung-Bae;Hyun, Jong-Yeong;Kim, Hyung-Seok;Yoon, Sung-Moon
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.44-53
    • /
    • 2007
  • The Jeonju-Il mine tailings contain large quantities of $SiO_2\;and\;Al_2O_3$ and lesser quantities of metallic components. In this study, we studied about the possibility of using mine tailings as a raw material in various industries. it was found that the sintered mine tailings had a good quality in every respect such as chromaticity, firing shrinkage and water absorption etc. Therefore if can substitute clay mineral in the ceramic industry. Also it can substitute about 2.94% of the raw materials of ordinary portland cement. We can use the coarse tailing as the fine aggregate for the ready-mixed mortar; and the fine tailing, as the filler for the bituminous paving mixture; because both products were not only suitable for Korea industrial standard in quality, but also environmentally harmless.

Synthesis of NiZn-Ferrite from Waste Iron Oxide Catalyst (산화철 페촉매를 애용한 NiZn-페라이트의 합성)

  • Hwang, Yeon;Lee, Hyo-Sook;Lee, Woo-Chul
    • Korean Journal of Crystallography
    • /
    • v.12 no.1
    • /
    • pp.20-24
    • /
    • 2001
  • NiZn-ferrite was synthesized usign waste iron oxide catalysts which were produced from styrene monomer process and buried underground as an industrial wastes. The spinel type ferrite was obtained by calcination and sintering of the mixture of finely ground waste catalysts, nickel oxide and zinc oxide powders. The sintered body of Ni/sub 0.5/Zn/sub 0.5/Fe₂O₄ composition at 1230℃ for 5 hours showed the density of 5.38g/㎤, and initial permeability of 59 at 1 kHz. Not only cerium oxide, which existed as a major component in the catalyst, but also unicorporated NiO and ZnO into spinel structure remained as second phases after sintering.

  • PDF