• Title/Summary/Keyword: mine adit

Search Result 12, Processing Time 0.026 seconds

동위원소를 이용한 지하수 오염원 추적에 관한 연구

  • 지상우;김효범;이지은;유상희;전용원;김선준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.501-504
    • /
    • 2003
  • Sulfur isotope composition was used to identify the sources of groundwater contamination near abandonded coal mines. From the analysis of mine adit drainages, tailing seepages, and spring waters near the abandonded Hambaek and Hanchang coal mines in Kangwon Province, it was inferred that it the highly possible source of the contamination of spring water is acid mine drainage(AMD). Sulfur isotope composition showed that seepage from tailings seemed to have more effect on the groundwater contamination than mine adit drainage, which suggests the remediation and anti-contamination methods of tailing seepages not only mine adit drainage are required.

  • PDF

폐광 전후 삼탄 광산배수의 수질특성과 의의

  • 정영욱;강상수;임길재;홍성규;조원재;조영도;전호석;민정식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.422-425
    • /
    • 2003
  • This study was carried out to apprehend the variation of quality of mine drainage in the abandoned Samtan coal mine. After closure of coal mine, although still pumping, water level in underground was raised to loom and the concentration of some elements such as Fe and Mn was elevated. At present, the worst pollution source in this area is too the acidic leachate drained from uncovered mine waste impoundment. The flow rate of mine drainage from the adit is ave. about 20,000t/d. If water were flooded and deteriorated due to stopping pumping, the impact of the mine drainage on the stream around the abandoned mine would be more severe. Therefore, It is considered that the prediction of water quality of mine drainage from the adit after stopping pumping will be very important with a view to establishing countermeasures.

  • PDF

갱내 황산염환원시설(IASRS)을 이용한 산성광산배수 처리에 관한 연구

  • 지상우;이상훈;유상희;김재욱;김선준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.184-187
    • /
    • 2003
  • To solve the problems of operating passive mine drainage treatment systems, the In Adit Sulfate Reducing System(IASRS) was suggested. By placing the SAPS inside the adit, the condition of constant temperature of 10~15$^{\circ}C$ can be maintained. The experiments using the models made up by four sections showd good efficiencies in pH control and metal removal rate, but showed still low sulfate removal rate of about 30% with high COB in the begining of the operation.

  • PDF

폐탄광 부근 지하수의 오염에 관한 연구

  • 지상우;고주인;유상희;전용원;김선준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.90-93
    • /
    • 2003
  • Sampling of waters from each stage of treatment system, SAPS (Successive Alkalinity Producing System), and spring water near the Hanchang coal mine of Kangwon. Province were carried out periodically and analyzed to evaluate the source and possible path of groundwater contamination by acid mine drainage(AMD). Chemical and sulfur isotope compositions showed that spring water was affected by seepage from mine tailings, and seepage of stonewall, a part of treatment system, was affected by both seepage from mine tailings and mine adit drainage. Through the treatment system no appreciable decrease of sulfur content was identified. And almost similar sulfur isotope compositions of water from each stage of the treatment system may suggest incomplete or very poor sulfate reduction by sulfate reducing bacteria.

  • PDF

Problems and improvement methods of passive treatment systems for acid mine drainage in Korea

  • Ji, Sang-Woo;Ko, Ju-In;Kim, Sun-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.504-510
    • /
    • 2003
  • This study has been carried out to evaluate the passive treatment systems for acid mine drainage in Korea and to suggest, if possible, the method for the improvement. 35 passive treatment systems in 27 mines have been constructed since 1996. SAPS, being the main process, was combined with more than one of processes such as anaerobic wetland, aerobic wetland, and oxidation pond for the construction of passive treatment system. Problems observed during the operation include the poor sulfate removal ratio, overflow, leakage, unusabless of the whole system, and inefficiency. The reasons of the poor sulfate removal ratio are believed that the low temperature during the winter prohibits the SRB activity and HRT for bacterial sulfate reduction is insufficient. An alternative method In Adit Sulfate Reducing System which enables to keep the temperature constant at about $15^{\circ}C$ was suggested. IASRS is the methods of placing the SAPS inside the adit, which enables the temperature around the system constant can be maintained. The experiments using the laboratory scaled model systems made up of four sections showed high efficiencies in pH control and metal removal ratios, but showed still low sulfate removal ratio of about $23\%$ also with high COD at the beginning of the operation.

  • PDF

The Contamination of Groundwater by Acid Mine Drainage in the Vicinity of the Hanchang Coal Mine and the Efficiency of the Passive Treatment System (산성광산배수에 의한 한창탄광 부근 지하수의 오염과 자연정화처리시설 효율에 관한 연구)

  • 지상우;김선준
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.9-18
    • /
    • 2003
  • Sampling of waters from each stage of treatment system (Successive Alkalinity Producing System; SAPS), tailings seepage, and spring near the Hanchang coal mine of Kangwon Province were carried out seasonally and analyzed to evaluate the source and possible path of groundwater contamination by acid mine drainage (AM). Sulfur isotope compositions were measured to identify the origin of groundwater contaminations and the sulfate reduction processes in the SAPS. Low pH and high metal concentration of spring water indicates possibility of the groundwater contamination by AMD. Removal efficiency of acidity of the SAPS was 18.17 g/$\textrm{m}^2$/day on an average and the metal removal efficiency was almost 100%, which was higher than those of other treatment systems. However, no appreciable decrease of sulfur content and almost similar sulfur isotope compositions of water from each stage of the treatment system may suggest incomplete or very poor sulfate reduction by sulfate reducing bacteria. Chemical and sulfur isotope compositions showed that spring water was contaminated by seepage from mine tailings. And seepage of stonewall, a part of treatment system was affected by both tailings seepage and mine adit drainage. In this study site, the treatment system was constructed for the only AMD from mine adit not for tailings seepages, which resulted in the groundwater contamination from tailing seepages. Similar situation is expected in other abandoned coal mine areas.

Characteristics of Precipitates and Geochemistry of Mine and Leachate Water in Janggun Mine (장군광산 갱내수와 침출수의 지화학적 및 침전물의 특성 연구)

  • Kim, Jun Yeong;Jang, Yun Deug;Kim, Yeong Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.125-134
    • /
    • 2014
  • The Janggun mine (Longitude $E129^{\circ}$ 03' 40", Latitude $N36^{\circ}$ 51' 19") was once operated as an underground mine and recently significant amount of mine and leachate water has been discharged from the mine adits and tailing dumps. Mine and leachate waters are characterized by neutral to weakly basic pH values (6.81-9.59). Major cations and anions have concentrations between 6.70-129.80 mg/L of Mg, 289.29-661.02 mg/L of Ca, 4.74-14.38 mg/L of Mn and 1205.00-2448.69 mg/L of $SO{_4}^{2-}$. Brownish yellow precipitates that found in the stream bottom consist of poorly crystallized 2-line ferrihydrite ($Fe_2O_3{\cdot}0.5H_2O$. Scanning electron microscope (SEM) photographs show that brownish yellow precipitates consisted of micro-sized granular particles of about $0.1{\mu}m$ in diameter. Semi-quantitative energy dispersive spectrometry (EDS) analyses show that these samples contained mainly Fe with minor Mn, Ca, Si and As.

Environmental Geochemistry and Heavy Matel Contamination of Ground and Surface Water, Soil and Sediment at the Kongjujuil Mine Creek, Korea (공주제일광산 수계에 분포하는 지하수, 지표수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.611-631
    • /
    • 1999
  • Enviromental geochemisty and heary metal contamination at the Kongjueil mine creek were underaken on the basis of physicohemical properties and mineralogy for various kinds of water (surface, mine and ground water),soil, precipitate and sediment collected of April and December in 1998. Hydrgeochemical composition of the water samples are characterized by relatively significant enricant of Ca+Na, alkiali ions $NO_3$ and Cl inground and surfore water, wheras the mine waters are relatively eneripheral water of the mining creek have the characteristics of the (Ca+Mg)-$(HCO_3+SO_4)$type. The pH of the mine water is high acidity (3.24)and high EC (613$\mu$S/cm)compared with those of surface and ground water. The range of $\delta$D and $\delta^{18}O$ values (relative to SMOW) in the waters are shpwn in -50.2 to -61.6% and -7.0 to -8.6$\textperthousand$(d value=5.8 to 8.7). Using computer program, saturation index of albite, calcite, dolomite in mine water are nearly saturated. The gibbiste, kaolinite and smectite are superaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that weathing of silicate minerals may be stable kaolinite owing to the continuous water-rock reaction. Geochemical modeling showed that mostly toxic heavy metals may exist larfely in the from of metal-sulfate $(MSO_4\;^2)$and free metal $(M^{2+})$ in nmine water. These metals in the ground and surface water could be formed of $CO_3$ and OH complex ions. The average enrichment indices of water samples are 2.72 of the groundwater, 2.26 of the surface water and 14.15 of the acid mine water, normalizing by surface water composition at the non-mining creek, repectively. Characteristics of some major, minor and rate earth elements (Al/Na, K/Na, V/Ni, Cr/V, Ni/Co, La/Ce, Th/Yb, $La_N/Yb_N$, Co/Th, La/Sc and Sc/Th) in soil and sediment are revealed a narrow range and homogeneous compositions may be explained by acidic to intermediate igneous rocks. And these suggested that sediment source of host granitic gneiss colud be due to rocks of high grade metamorphism originated by sedimentary rocks. Maximum concentrations of environmentally toxic elements in sediment and soil are Fe=53.80 wt.% As=660, Cd=4, Cr=175, Cu=158, Mn=1010, Pb=2933, Sb=4 and Zn=3740 ppm, and extremely high concentrations are found are found in the subsurface soil near the ore dump and precipitates. Normalizing by composition of host granitic gneiss, the average enerichment indices are 3.72 of the sediments, 3.48 of the soils, 10.40 of the precipitates of acid mine drainage and 6.25 of the soils near the main adit. The level of enerichment was very severe in mining drainage sediments, while it was not so great in the soils. mineral composition of soil and sediment near the mining area were partly variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. reddish variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. Reddish brown precipitation mineral in the acid mine drainage identifies by schwertmanite. From the separated mineralgy, soil and sediment are composed of some pyrite, arsenopyite, chalcopyrite, sphalerite, galena, malachite, goethite and various kinds of hydroxied minerals.

  • PDF

Environmental effects from Natural Waters Contaminated with Acid Mine Drainage in the Abandoned Backun Mine Area (백운 폐광산의 방치된 폐석으로 인한 주변 수계의 환경적 영향)

  • 전서령;정재일;김대현
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.325-337
    • /
    • 2002
  • We examined the contamination of stream water and stream sediments by heavy metal elements with respect to distance from the abandoned Backun Au-Ag-Cu mine. High contents of heavy metals (Pb, Zn, Cu, Cd, Mn, and Fe) and aluminum in the waters connected with mining and associated deposits (dumps, tailings) reduce water quality. In the mining area, Ca and SO$_4$ are predominant cation and anion. The mining water is Ca-SO$_4$ type and is enriched in heavy metals resulted from the weathering of sulfide minerals. This mine drainage water is weakly acid or neutral (pH; 6.5-7.1) because of neutralizing effect by other alkali and alkaline earth elements. The effluent from the mine adit is also weakly acid or neutral, and contains elevated concentrations of most elements due to reactions with ore and gangue minerals in the deposit. The concentration of ions in the Backun mining water is high in the mine adit drainage water and steeply decreased award to down stream. Buffering process can be reasonably considered as a partial natural control of pollution, since the ion concentration becomes lower and the pH value becomes neutralized. In order to evaluate mobility and bioavailability of metals, sequential extraction was used for stream sediments into five operationally defined groups: exchangeable, bound to carbonates, bound to FeMn oxide, bound to organic matter, and residual. The residual fraction was the most abundant pool for Cu(2l-92%), Zn(28-89%) and Pb(23-94%). Almost sediments are low concentrated with Cd(2.7-52.8 mg/kg) than any other elements. But Cd dominate with non stable fraction (68-97%). Upper stream sediments are contaminated with Pb, and down area sediments are enriched with Zn. It is indicate high mobility of Zn and Cd.

Geology and Ore deposits of Songgwang Mine (송광광산(松廣鑛山)의 지질광상(地質鑛床))

  • Hong, Man Seup
    • Economic and Environmental Geology
    • /
    • v.2 no.3
    • /
    • pp.58-67
    • /
    • 1969
  • Songgwang lead zinc mine is located in about 12km to the north-east of Jeonju City. Geology of the mine and its visinity is consisted of Jeonju series belonged to so-called Okcheon system, Seodaesan tuff formation, Silla series, and the quartz porphyry intruded into these formations. Jeonju series comprising 3 formations; that is, of Sadaeri, Sindong, and Girinbong. Jeonju series is generally distributed in southern part of the area, striking NNW, and diping NE $30^{\circ}$, or NW $30^{\circ}$. It is deformed to form synclinorium and anticlinorium plunging to the north with low angle. In the northern part of the area, Jeonju series was cut by Sinpeongri-fault of NEE direction near Sinpeongri. In the north side of the fault, it is overturned and shows NEE or NWW strikes and NW $60^{\circ}$ dips. At the west of Songgwangri, it is cut by 3 thrusts; the two are almost parallel each other, and the third oneis manifested by the fact that the lower black shale zone thrusted over the upper limestone. Songgwangri thrust, so named, is a post-mineral fault and its plane represents a premineral slip plane. Enrichment of are took place along the bedding plane or fissure parallel to it, as seen in adit No. 1 or No. 2 along the floor of the thrust, and along the sheared zone or the brecciated zone oblique to the plane near the thrust in crystalline limestone of Sindong formation as observed in the underground levels of inclined slope. Ore minerals are chiefly zincblende, galena, pyrrhotite, arsenopyrite, acompanied pyrite and chalcopyrite, and contain Au and Ag. In earlier stage of mineralization, the limestone was recrystalized, and sulphide minerals were enriched in the· permiable zone said above by pyrometasomatism, and in later stage the limestone was affected chloritization and sericitization. However hydrothermal replacement was weak, so that enrichment did not took place. It seems that minerallizing materials came up through the premineral slip plane and injected, and replaced the limestone in permiable zone said above with sulphide are minerals. Then Songgwangri thrust took place and, the lower black shale zone thrusted upon crystalline limestone.

  • PDF