• Title/Summary/Keyword: millimeter-wave channel

Search Result 70, Processing Time 0.027 seconds

Study of performance and characteristics of InP-composite channel MHEMT for High Breakdown Voltage (높은 항복전압을 위한 InP 합성 채널 MHEMT의 성능과 특성에 대한 연구)

  • Choi, Seok-Gyu;Beak, Young-Hyun;Han, Min;Lee, Seong-Dea;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.467-468
    • /
    • 2006
  • To perform the comparative study, we experimented on two differential epitaxial structures, the conventional Metamorphic High Electron Mobility Transistor (MHEMT) using the InAlAs/InGaAs structure and the InP-composite channel MHEMT adopting the InAlAs/InGaAs/InP/n-InP structure. Compared to the conventional MHEMT, the InP-composite channel MHEMT shows improved breakdown performance; over about 3.5 V. This increased breakdown voltage can be explained by the lower impact ionization coefficient of the InP-composite channel MHEMT than that of the conventional MHEMT.

  • PDF

Performance Analysis of DS-CDMA System in Millimeter-Wave Fading Channel (밀리미터파 페이딩 채널에서 DS-COMA시스템의 성능 분석)

  • Kang, Heau-Jo;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.544-550
    • /
    • 2009
  • In this paper, we proposed the radio wave propagation characteristics of the next-generation ultrafast wireless communication system in millimeter-wave fading channel. For considering doppler shift and Rayleigh fading simultaneously, the fading simulator of Jakes model implemented and analyzed the performance of the next-generation wireless communication system. In addition, the error rate characteristics of DS-CDMA system analyzed in the millimeter-wave fading channel and the system performance improved by coding technique and diversity technique.

  • PDF

Measurement-Based Propagation Channel Characteristics for Millimeter-Wave 5G Giga Communication Systems

  • Lee, Juyul;Liang, Jinyi;Kim, Myung-Don;Park, Jae-Joon;Park, Bonghyuk;Chung, Hyun Kyu
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1031-1041
    • /
    • 2016
  • This paper presents millimeter-wave (mmWave) propagation characteristics and channel model parameters including path loss, delay, and angular properties based on 28 GHz and 38 GHz field measurement data. We conducted measurement campaigns in both outdoor and indoor at the best potential hotspots. In particular, the model parameters are compared to sub-6 GHz parameters, and system design issues are considered for mmWave 5G Giga communications. For path loss modeling, we derived parameters for both the close-in free space model and the alpha-beta-gamma model. For multipath models, we extracted delay and angular dispersion characteristics including clustering results.

Estimation of Sparse Channels in Millimeter-Wave MU-MIMO Systems

  • Hu, Anzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2102-2123
    • /
    • 2016
  • This paper considers a channel estimation scheme for millimeter-wave multiuser multiple-input multiple-output systems. According to the proposed method, parts of the beams are selected and the channel parameters are estimated according to the sparsity of channels and the orthogonality of the beams. Since the beams for each channel become distinct and the signal power increases with the increased number of antennas, the proposed approach is able to achieve good estimation performance. As a result, the sum rate can be increased in comparison with traditional approaches, and channels can be estimated with fewer pilot symbols. Numerical results verify that the proposed approach outperforms traditional approaches in cases with large numbers of antennas.

Study of Composite channel Structure of Metamorphic HEMT for the Improved Device Characteristics (기존의 MHEMT와 InP 합성 채널 MHEMT의 소자의 항복 특성 분석 및 비교 연구)

  • Choi, Seok-Gyu;Baek, Yong-Hyun;Han, Min;Bang, Seok-Ho;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, we have performed the channel modification of the conventional MHEMT (metamorphic high electron mobility transistor) to improve the breakdown characteristics. The Modified channel consists of the InxGal-xAs channel and the InP sub channel instead of the InxGa1-xAs channel. Since InP has the lower impact ionization coefficient in comparison with In0.53Ga0.47As, we have adopted the InP-composite channel in the modified MHEMT. We have investigated the breakdown mechanism and the RF characteristics for the conventional and the InP- composite channel MHEMTs. From the measurement results, we have obtained the enhanced on and off-state breakdown voltages of 2.4 and 5.7 V, respectively. Also, the increased RF characteristics have brought about the decreased output conductance for the InP-composite channel MHEMT. The cut-off frequency (fT) and the maximum oscillation frequency (fmax) for the InP-composite Channel MHEMT were 160 GHz and 230 GHz, respectively. It has been shown that the InP-composite channel MHEMT has the potential applications for the millimeter wave power device.

Millimeter-wave diffraction-loss model based on over-rooftop propagation measurements

  • Kim, Kyung-Won;Kim, Myung-Don;Lee, Juyul;Park, Jae-Joon;Yoon, Young Keun;Chong, Young Jun
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.827-836
    • /
    • 2020
  • Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a well-controlled environment to avoid reflected waves also makes long-range diffraction measurements challenging. Thus, the prediction of diffraction loss at millimeter-wave frequency bands relies on theoretical models, such as the knife-edge diffraction (KED) and geometrical theory of diffraction (GTD) models; however, these models produce different diffraction losses even under the same environment. Our observations revealed that the KED model underestimated the diffraction loss in a large Fresnel-Kirchhoff diffraction parameter environment. We collected power-delay profiles when millimeter waves propagated over a building rooftop at millimeter-wave frequency bands and calculated the diffraction losses from the measurements while eliminating the multipath effects. Comparisons between the measurements and the KED and GTD diffraction-loss models are shown. Based on the measurements, an approximation model is also proposed that provides a simple method for calculating the diffraction loss using geometrical parameters.

MMB System and Channel Model for 5th Generation Mobile Communication (5세대 이동통신을 위한 MMB 시스템 및 채널 모델)

  • Moon, Sangmi;Kim, Bora;Malik, Saransh;Kim, Jihyung;Lee, Moon-Sik;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.3-10
    • /
    • 2014
  • Millimeter wave (mmWave) has attracted great interest recently and the necessity of Millimeter Mobile Broadband (MMB) system has appeared based on the 4 Generation Long Term Evolution-Advanced (LTE-A) Specification. Currently, there are many studies about the mmWave communication channel. And it is subject of interest to analyze the performance in MMB channel environments. In this paper, we design the MMB system for 5th Generation mobile communication and propose channel models through the analysis of the mmWave propagation characteristics. Also, we have analyzed the performance of the MMB system of 28 GHz band in MMB channel environments.

The Effect of Doping Layer Structures on the Performance of Millimeter-wave PHEMT's (밀리미터파 PHEMT의 도핑층 설계에 따른 특성 변화)

  • Park, Hoon;Park, Jin-Kuk;Jung, Ji-Hak;Park, Hyun-Chang
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.286-289
    • /
    • 2000
  • PHEMT's with three different doping structures, -SH(single-heterojunction), DH (double-heterojunction), and DC(doped-channel)-,were designed, fabricated and characterized to study the effect of doping layer structures on the performance of millimeter-wave PHEMT's. 0.25${\mu}{\textrm}{m}$ DH-PHEMT with below-channel doping of 1$\times$10$^{12}$ c $m^{-2}$ was superior to SH-PHEMT by 40% in $I_{dss}$, 20% in f/sib T/ and showed broador gm- $I_{D}$ characteristics which is advantageous to power applications DH-PHEMT showed similar DC and small-signal performance compared with DC-PHEMT. Taking the much higher carrier mobility into considerations, DH-PHEMT is believed to be the best candidate for millimeter-wave, low-noise and/or power applications.s.s.

  • PDF

Energy Detector based Time of Arrival Estimation using a Neural Network with Millimeter Wave Signals

  • Liang, Xiaolin;Zhang, Hao;Gulliver, T. Aaron
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3050-3065
    • /
    • 2016
  • Neural networks (NNs) are extensively used in applications requiring signal classification and regression analysis. In this paper, a NN based threshold selection algorithm for 60 GHz millimeter wave (MMW) time of arrival (TOA) estimation using an energy detector (ED) is proposed which is based on the skewness, kurtosis, and curl of the received energy block values. The best normalized threshold for a given signal-to-noise ratio (SNR) is determined, and the influence of the integration period and channel on the performance is investigated. Results are presented which show that the proposed NN based algorithm provides superior precision and better robustness than other ED based algorithms over a wide range of SNR values. Further, it is independent of the integration period and channel model.

Compressed Sensing Techniques for Millimeter Wave Channel Estimation (밀리미터파 채널 추정을 위한 압축 센싱 기법)

  • Han, Yonghee;Lee, Jungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Millimeter wave (mmWave) bands are expected to improve date rate of 5G systems due to the wide available bandwidth. While severe path loss in those bands has impeded the utilization, short wavelength enables a large number of antennas packed in a compact form, which can mitigate the path loss. However, estimating the channel with a conventional scheme requires a huge training overhead, hence an efficient estimation scheme operating with a small overhead needs to be developed. The sparsity of mmWave channels caused by the limited scatterers can be exploited to reduce the overhead by utilizing compressed sensing. In this paper, we introduce compressed sensing techniques for mmWave channel estimation. First, we formulate wideband channel estimation into a sparse recovery problem. We also analyze the characteristics of random measurement matrix constructed using quantized phase shifters in terms of mutual incoherence.