• Title/Summary/Keyword: milk synthesis

검색결과 100건 처리시간 0.025초

Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells

  • Xia, Xiaojing;Che, Yanyi;Gao, Yuanyuan;Zhao, Shuang;Ao, Changjin;Yang, Hongjian;Liu, Juxiong;Liu, Guowen;Han, Wenyu;Wang, Yuping;Lei, Liancheng
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.410-417
    • /
    • 2016
  • During the lactation cycle of the bovine mammary gland, autophagy is induced in bovine mammary epithelial cells (BMECs) as a cellular homeostasis and survival mechanism. Interferon gamma ($IFN-{\gamma}$) is an important antiproliferative and apoptogenic factor that has been shown to induce autophagy in multiple cell lines in vitro. However, it remains unclear whether $IFN-{\gamma}$ can induce autophagy and whether autophagy affects milk synthesis in BMECs. To understand whether $IFN-{\gamma}$ affects milk synthesis, we isolated and purified primary BMECs and investigated the effect of $IFN-{\gamma}$ on milk synthesis in primary BMECs in vitro. The results showed that $IFN-{\gamma}$ significantly inhibits milk synthesis and that autophagy was clearly induced in primary BMECs in vitro within 24 h. Interestingly, autophagy was observed following $IFN-{\gamma}$ treatment, and the inhibition of autophagy can improve milk protein and milk fat synthesis. Conversely, upregulation of autophagy decreased milk synthesis. Furthermore, mechanistic analysis confirmed that $IFN-{\gamma}$ mediated autophagy by depleting arginine and inhibiting the general control nonderepressible-2 kinase (GCN2)/eukaryotic initiation factor $2{\alpha}$ ($eIF2{\alpha}$) signaling pathway in BMECs. Then, it was found that arginine supplementation could attenuate $IFN-{\gamma}$-induced autophagy and recover milk synthesis to some extent. These findings may not only provide a novel measure for preventing the $IFN-{\gamma}$-induced decrease in milk quality but also a useful therapeutic approach for $IFN-{\gamma}$-associated breast diseases in other animals and humans.

Synbiotic Synthesis of Oligosaccharides During Milk Fermentation by Addition of Leuconostoc Starter and Sugars

  • Seo, Dong-Mi;Kim, So-Young;Eom, Hyun-Ju;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권11호
    • /
    • pp.1758-1764
    • /
    • 2007
  • Synthesis of oligosaccharides during milk fermentation was attempted by inoculating Leuconostoc citreum with Lactobacillus casei, Lb. delbrueckii subsp. bulgaricus, and Streptococcus thermophilus as starters. Dextransucrase of Ln. citreum worked as a catalyst for the transglycosylation reaction of sugars; sucrose was added as the glucose donor, and lactose or maltose acted as the acceptor compound for the reaction. When 4% sucrose was added in milk, glucosyl-lactose was synthesized (about 1%, w/v) after 1-2 days of fermentation at 15 or $25^{\circ}C$. Alternatively, when sucrose and maltose (2% each, w/v) were added, panose (about 1 %, w/v) and other isomaltooligosaccharides were made in a day at $15-35^{\circ}C$. Growth patterns of lactobacilli and streptococci starters were not affected by the coculture of leuconostoc starter, but the rate of acid synthesis was slightly slowed at every temperature. Addition of sugars in milk did not give any adverse effect on the lactate fermentation. Accordingly, the use of leuconostoc starter and addition of sugars in milk allowed the production of oligosaccharides-containing fermented milk, and application of this method will facilitate the extensive development of synbiotic lactate foods.

Effects of Active Immunization against Somatostatin or its Analogues on Milk Protein Synthesis of Rat Mammary Gland Cells

  • Kim, J.Y.;Cho, K.K.;Chung, M.I.;Kim, J.D.;Woo, J.H.;Yun, C.H.;Choi, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권4호
    • /
    • pp.570-575
    • /
    • 2002
  • Effects of active immunization against native 14-mer somatostatin (SRIF, somatotropin releasing inhibiting factor) and its two 14-mer-somatostatin analogues on the milk production in rat mammary cells were studied. Native SRIF, Tyr11-somatostatin (Tyr11-SRIF), and D-Trp8, D-Cys14-somatostatin (Trp8Cys14-SRIF) were conjugated to bovine serum albumin (BSA) for immunogen preparation. Twenty-four female Sprague-Dawley rats were divided into four groups and immunized against saline (Control), SRIF, Tyr11-SRIF, and Trp8Cys14-SRIF at five weeks of age. Booster immunizations were performed at 7, 9, and 11 weeks of age. SRIFimmunized rats were mated at 10 weeks of age. The blood and mammary glands were collected at day 15 post-pregnancy and -lactation. To measure the amount of milk protein synthesis in the mammary gland, mammary cells isolated from the pregnant and the lactating rats, were cultured in the presence of $^3H$-lysine. No significant differences in growth performance, concentration of growth hormone in the circulation, and the amount of milk protein synthesis were observed among the groups. Inductive levels of serum anti-SRIF antibody in the SRIF and Tyr11-SRIF groups but not in the Trp8Cys14-SRIF group, were significantly higher than that of the control group during the pregnancy and lactation periods. The result suggests that active immunization against native 14-mer SRIF and Tyr11-SRIF was able to induce anti-SRIF antibodies, but did not affect the milk protein synthesis.

Blood amino acids profile responding to heat stress in dairy cows

  • Guo, Jiang;Gao, Shengtao;Quan, Suyu;Zhang, Yangdong;Bu, Dengpan;Wang, Jiaqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.47-53
    • /
    • 2018
  • Objective: The objective of this experiment was to investigate the effects of heat stress on milk protein and blood amino acid profile in dairy cows. Methods: Twelve dairy cows with the similar parity, days in milk and milk yield were randomly divided into two groups with six cows raised in summer and others in autumn, respectively. Constant managerial conditions and diets were maintained during the experiment. Measurements and samples for heat stress and no heat stress were obtained according to the physical alterations of the temperature-humidity index. Results: Results showed that heat stress significantly reduced the milk protein content (p<0.05). Heat stress tended to decrease milk yield (p = 0.09). Furthermore, heat stress decreased dry matter intake, the concentration of blood glucose and insulin, and glutathione peroxidase activity, while increased levels of non-esterified fatty acid and malondialdehyde (p<0.05). Additionally, the concentrations of blood Thr involved in immune response were increased under heat stress (p<0.05). The concentration of blood Ala, Glu, Asp, and Gly, associated with gluconeogenesis, were also increased under heat stress (p<0.05). However, the concentration of blood Lys that promotes milk protein synthesis was decreased under heat stress (p<0.05). Conclusion: In conclusion, this study revealed that more amino acids were required for maintenance but not for milk protein synthesis under heat stress, and the decreased availability of amino acids for milk protein synthesis may be attributed to competition of immune response and gluconeogenesis.

The Effect of Glucose and Glucose Transporter on Regulation of Lactation in Dairy Cow

  • Heo, Young-Tae;Park, Joung-Jun;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • 제39권4호
    • /
    • pp.97-104
    • /
    • 2015
  • Glucose is universal and essential fuel of energy metabolism and in the synthesis pathways of all mammalian cells. Glucose is the one of the major precursors of lactose synthesis using glycolysis result in producing milk fat and protein. During the milk fat synthesis, lipoprotein lipase (LPL) and CD36 are required for glucose uptake. Various morecules such as acyl-CoA synthetase 1 (ACSL1) activity of acetyl-CoA synthetase 2 (ACSS2), ACACA, FASN AGPAT6, GPAM, LPIN1 are closely related with milk fat synthesis. Additionally, glucose plays a major role for synthesizing lactose. Activations of lactose synthesize enzymes such as membranebound enzyme, beta-1,4-galactosyl transferase (B4GALT), glucose-6-phosphate dehydrogenase (G6PD) are changed by concentration of glucose in blood resulting change of amount of lactose production. Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. There are 2 types of glucose transporters which consisted facilitative glucose transporters (GLUT); and sodium-dependent transport, mediated by the Na+/glucose cotransporters (SGLT). Among them, GLUT1, GLUT8, GLUT12, SGLT1, SGLT2 are main glucose transporters which involved in mammary gland development and milk synthesis. However, more studies are required for revealing clear mechanism and function of other unknown genes and transporters. Therefore, understanding of the mechanisms of glucose usage and its regulation in mammary gland is very essential for enhancing the glucose utilization in the mammary gland and improving dairy productivity and efficiency.

Feeding Unprotected CLA Methyl Esters Compared to Sunflower Seeds Increased Milk CLA Level but Inhibited Milk Fat Synthesis in Cows

  • Dohme-Meier, F.;Bee, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권1호
    • /
    • pp.75-85
    • /
    • 2012
  • An experiment was conducted to compare the effect of the same amount of 18:2 offered either as 18:2n-6 or as a mixture of unprotected 18:2c9t11 and 18:2t10c12 on feed intake, milk components as well as plasma and milk fatty acid profile. Fifteen cows were blocked by milk yield and milk fat percentage and within block assigned randomly to 1 of 3 treatments (n = 5). Each cow passed a 12-d adjustment period (AP) on a basal diet. After the AP cows received 1 of 3 supplements during an 18-d experimental period (EP). The supplements contained either 1.0 kg ground sunflower seeds (S), 0.5 kg conjugated linoleic acid (CLA)-oil (C) or 0.75 kg of a mixture of ground sunflower seeds and CLA-oil (2:1; SC). All 3 supplements contained the same amount of 18:2 either as CLA (${\Sigma}18$:2c9t11+18:2t10c12, 1:1) or as 18:2c9c12. During the last 2 d of AP and the last 4 d of EP feed intake and milk yield were recorded daily and milk samples were collected at each milking. Blood samples were collected from the jugular vein on d 11 of AP and d 15 and 18 of EP. The 18:2 intake increased in all treatments from AP to EP. Regardless of the amount of supplemented CLA, the milk fat percentage decreased by 2.35 and 2.10%-units in treatment C and SC, respectively, whereas in the treatment S the decrease was with 0.99%-unit less pronounced. Thus, C and SC cows excreted daily a lower amount of milk fat than S cows. The concentration of trans 18:1 in the plasma and the milk increased from AP to EP and increased with increasing dietary CLA supply. While the concentration of 18:2c9t11 and 18:2t10c12 in the plasma and that of 18:2t10c12 in the milk paralleled dietary supply, the level of 18:2c9t11 in the milk was similar in C and CS but still lower in S. Although the dietary concentration of CLA was highest in treatment C, the partial replacement of CLA by sunflower seeds had a similar inhibitory effect on milk fat synthesis. Comparable 18:2c9t11 levels in the milk in both CLA treatments implies that this isomer is subjected to greater biohydrogenation with increasing supply than 18:2t10c12. The fact that unprotected 18:2t10c12 escaped biohydrogenation in sufficient amounts to affect milk fat synthesis reveals opportunities to develop feeding strategies where reduced milk fat production is desirable or required by the metabolic state of the cow.

Bovine Growth Hormone and Milk Fat Synthesis: from the Body to the Molecule - Review -

  • Kim, W.Y.;Ha, J.K.;Han, In K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권4호
    • /
    • pp.335-356
    • /
    • 1997
  • Injection of bovine growth hormone (bGH) to lactating dairy cows increases milk yield and yields of milk components including fat. It is generally believed that most of the anabolic effects derived from bGH in animal tissues are primarily mediated by IGF-1. IGF-1 is a strong anabolic peptide in the plasma of animals and exerts mitogenic and metabolic effects on target cells. Contrary to most protein hormones, the majority of IGF-1 in circulation is bound to the binding proteins (IGFBPs) which are known to be responsible for modifying the biological actions of IGF-1, thus making determinations of IGF-1 actions more difficult. On the other hand, fat is a major milk component and the greatest energy source in milk. Currently, the fat content of milk is one of the major criteria used in determining milk prices. It has been known that flavor and texture of dairy products are mainly affected by milk fat and its composition. Acetyl-CoA carboxylase (ACC) is the rate limiting enzyme which catalyzes the conversion of acetyl-CoA to malonyl-CoA for fatty acid synthesis in 1ipogenic tissues of animals including bovine lactating mammary glands. In addition to the short-tenn hormonal regulation of ACC by changes in the catalytic efficiency per enzyme molecule brought about by phosphorylation and dephosphorylation of the enzyme, the long-term hormonal regulation of ACC by changes in the number of enzyme molecules plays an essential role in control of ACC and lipogenesis. Insulin, at supraphysiological concentrations, binds to IGF-1 receptors, thereby mimicking the biological effects of IGF-1. The receptors for insulin and IGF-1 share structural and functional homology. Furthermore, epidermal growth factor increased ACC activity in rat hepatocytes and adipocytes. Therefore, it can be assumed that IGF-1 mediating bGH action may increase milk fat production by stimulation ACC with phosphorylation (short term) and/or increasing amounts of the enzyme proteins (long term). Consequently, the main purpose of this paper is to give the readers not only the galactopoietic effects of bGH, but also the insight of bGH action with regard to stimulating milk fat synthesis from the whole body to the molecular levels.

Effects of Using Monensin and Different Levels of Crude Protein on Milk Production, Blood Metabolites and Digestion of Dairy Cows

  • Ghorbani, B.;Ghoorchi, T.;Amanlou, H.;Zerehdaran, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권1호
    • /
    • pp.65-72
    • /
    • 2011
  • Twenty-four Holstein dairy cows were used to evaluate the single and combined effects of different levels of crude protein (CP) and monensin treatment during early lactation on blood metabolites, milk yield and digestion of dairy cows. The experiment was designed as a completely randomized block with a $3{\times}2$ factorial arrangement of treatments. The factors were three concentrations of CP supplement (19.5, 21.4, and 23.4% of dry matter) and two levels of monensin (0 and 350 mg per cow per day). The experiment consisted of three phases and each phase was 3 wk in length. Monensin did not affect milk yield, lactose, solids-non-fat (SNF), blood glucose, triglyceride and DMI, but increased blood cholesterol, blood urea nitrogen (BUN), insulin and reduced blood ${\beta}$-hydroxybutyrate (BHBA), milk fat and protein percentage. Monensin premix significantly decreased rumen ammonia, but rumen pH and microbial protein synthesis were not affected by monensin treatment. Increasing dietary CP improved milk and protein production, but did not alter the other components of milk. Digestibility of NDF, ADF, CP were improved by increasing dietary CP. Increasing dietary CP from 19.5 to 21.4% had no significant effect on ruminal ammonia, but increasing CP to 23.4% significantly increased ruminal ammonia. There was a linear relationship between level of crude protein in the diet and volume of urine excretion. Microbial protein synthesis was affected by increasing CP level; in this way maximum protein synthesis was achieved at 23.4% CP.

Plasma Prolactin, Blood Metabolites and Yield and Composition of Milk during Early Lactation in Goats Following Administration of Bromocryptine

  • Singh, M.;Ludri, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권4호
    • /
    • pp.585-589
    • /
    • 1999
  • Six crossbred goats in their 2nd or 3rd lactation, were administered bromocryptine at 5 mg/day during early lactation of 15-20 days (period I) and thereafter again at an interval of 13 days, bromocryptine was given for 5 days (period II). Blood samples were collected before (-5, -4, -3, -2, -1) during (1, 2, 3, 4, 5) and after (+1, +2, +3, +4, +5) administration of bromocryptine in both the periods of study. In period I, administration of bromocryptine resulted in a decrease in milk yield to the extent of 16..8% in comparison to before treatment, and 28.5% after the cessation of treatment. The glucose content of blood increased (p<0.01) as the milk yield decreased without any change in NEFA concentration. During period II of bromocryptine treatment the milk yields did not change in spite of a decline in prolactin level, perhaps the effect of previous treatment was prolonged. A decline in protein and lactose content of milk after bromocryptine treatment in both the periods of study, when prolactin level also declined suggests a role of prolactin in protein synthesis and also a depressing effect on lactose synthesis.

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.