• Title/Summary/Keyword: milestone

Search Result 179, Processing Time 0.031 seconds

Polarity affects the antioxidant and antimicrobial activities of jellyfish (Acromitus hardenbergi) extracts

  • Khong, Nicholas M.H.;Foo, Su Chern;Yau, Sook Kun;Chan, Kim Wei;Yusoff, Fatimah Md.
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.189-201
    • /
    • 2022
  • Jellyfish is an emerging aquaculture species, farmed for Oriental cuisines and nutraceutical ingredients. This study aimed to examine antioxidative and antimicrobial potentials of various fractions of the jellyfish, Acromitus hardenbergi. The bell and oral arms of the jellyfish were sequentially extracted with petroleum ether (PE), dichloromethane (DCM), chloroform (CHCl3), methanol (MeOH), and water (H2O) to extract its bioactive in an increasing polarity gradient. Test fractions were assayed for antiradical activities using electron spin resonance spectrometry, β-carotene-linoleate model and Folin-Ciocalteu assay; and antimicrobial activity against 2 Gram-negative bacteria, 4 Gram-positive bacteria and 2 fungal species using the disc diffusion assay. All fractions were also subjected to Fourier Transform Infrared (FTIR) analysis to identify types of functional groups present. It was found that the hydrophilic extracts (H2O fractions) possessed the most effective radical scavenging activity (p < 0.05) while the lipophilic extracts (PE fractions) the most active antimicrobial activity, especially against Gram-positive bacteria (p < 0.05). Total oxidation substrates content was found to be highest in the PE fractions of jellyfish bell and oral arms (p < 0.05). FTIR data showed that the H2O and MeOH fractions contains similar functional groups including -OH, -C=O, -N-H and -S=O groups, while the PE, DCM, and CHCl3 fractions, the -CH3, -COOH groups. This study showed that A. hardenbergi contains antioxidants and antimicrobials, thereby supporting the traditional claim of the jellyfish as an anti-aging and health-promoting functional food. Bioassay-guided fractionation approach serves as a critical milestone for the strategic screening, purification, and elucidation of therapeutically significant actives from jellyfish.

Load-carrying Capacities of Safety Structures on Wind-resistant Analyses of Cable-stayed Bridge (사장교의 내풍해석을 통한 인명보호 구조물의 내하능력평가)

  • Huh, Taik-Nyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.587-594
    • /
    • 2022
  • In the 2000s, a lot of cable-type grand bridges are being built in consideration of economic aspects such as the reduction of logistics costs and the distribution of traffic volume due to rapid economic development. In addition, because the recently installed grand bridges are designed in an aesthetic form that matches the surrounding environment as well as the original function of the road bridge, and serves as a milestone in an area and is used as an excellent tourism resource, attracting many vehicles and people, there is an urgent need for a safety structure that can ensure the safety of not only vehicles but also people. In order to make cable-stayed bridge safe on wind for additional five safety structures, main girder models with and without safety structures for wind-tunnel experiments was made, and wind tunnel experiments was carried out to measure aerodynamic force coefficients. Also, wind-resistant analyses of 3D cable-stayed bridge were performed on the basis of wind-tunnel experiment results. From the wind tunnel experiments for the aerodynamic force coefficients of main girder with five safety structures and the wind resistant analyses of cable-stayed bridge without safety structure and with safety structure, it was concluded that the best form of wind-resistant safety was shown in the order of mesh, standard, bracing, hollow, and closed type. And wind-resistant safety of cable-stayed bridge with hollow and closed type on design wind speed 68.0m/sec was not secured. Finally, as five safety structures are installed, maximum rate of stress increments was shown in the order of steel main beam, steel floor beam, concrete floor beam and cables.

A Study on the Battle Management Language Application for the C4I and M&S Interoperation in ROK Forces (한국군에서의 C4I체계와 M&S 상호운용을 위한 BML 적용에 관한 연구)

  • Jung, Whan-Sik;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.91-101
    • /
    • 2010
  • Battle Management Language (BML) is defined as an unambiguous language intended to provide for command and control of simulated and live forces in U.S. It has been developed to connect between command and control system and Modeling & Simulation in the U.S., including NATO M&S Working Group. Its goal is to provide situational awareness and offer a path forward for interoperation of C2 systems and simulations. This study deals with BML development in U.S. that begins from army and is being expanded in multinational environment. It also proposes the BML application for C4I and M&S interoperation in the Korean forces. Recent developments of BML in U.S. have shown the potential for interoperation between C2 systems and simulations in a coalition environment. Finally, this study proposes a general BML application method and shows the example of its application to the Korea Joint Command Control System (KJCCS). It provides an architecture and a milestone for BML application in the Korean forces.

Trade Linkage and Transmission of Geopolitical Risks: Evidence from the Peace Progress in 2018

  • Taehyun Kim;Yongjun Kim
    • Journal of Korea Trade
    • /
    • v.26 no.3
    • /
    • pp.45-62
    • /
    • 2022
  • Purpose - Using unexpected changes in geopolitical tensions on the Korean peninsula as a quasi-natural experimental setting, we examine whether and how geopolitical risks travel across borders through firm-level imports and exports linkages. We also test whether the effects are driven by either imports or exports and assess whether firms can effectively hedge themselves against geopolitical risks. Design/methodology - We focus on a series of unanticipated geopolitical events taken place in Korea in 2018. Making use of the shocks to geopolitical climate, we identify five milestone events toward peace talks. We employ the event studies methodology. We examine heterogenous firm-level stock price reactions around key event dates depending on firms' exposure to geopolitical risks. As a measure of firms' exposure to geopolitical risks in Korea, we utilize a text-based measure of firm-level trade links. When a firm announces and discusses its purchase of inputs from Korea or sales of outputs to Korea in their annual disclosure filings, we define a firm to have a trade relationship with Korea and have exposure to Korean geopolitical risks. Similarly, we use a measure of a firm's hedging policies based on a firm's textual mention of the use of foreign exchange derivatives in their annual disclosure. Findings - We find that U.S. firms that have direct trade links to Korea gained significantly more value when the intensity of geopolitical risks drops compared to firms without such trade links to Korea. The effects are pronounced for firms purchasing inputs from or selling outputs to Korea. We find that the effectiveness of foreign exchange hedging against geopolitical risks is limited. Originality/value - We document the international transmission of geopolitical uncertainty through trade linkages. Export links as well as import links serve as important nexus of transmission of geopolitical risks across borders. Hedging strategies involving foreign-exchanges derivatives do not seem to insulate firms again geopolitical risks. With the recent movements of localization and reshuffling of the global value chain, our results suggest a significant impact of geopolitical risks in Korea on the construction of the global value chain.

Validity of the Nielsen-type hanger arrangement in spatial arch bridges with straight decks

  • Mirian Canovas-Gonzalez;Juan M. Garcia-Guerrero;Juan J. Jorquera-Lucerga
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.51-69
    • /
    • 2023
  • In tied-arch bridges, a properly designed connection between the arch and the deck may become crucial, since the forces in the structure may be significantly reduced. This implies substantial material savings and, consequently, cheaper constructions. The introduction of the Nielsen cable arrangement (composed of V-shaped inclined hangers) in the last century was a milestone because it was able to reduce deflections and bending moments both in the arch and in the deck. So far, the Nielsen cable arrangement has proven to be successful in traditional vertical arch bridges. However, despite its advantages, it has not been widely applied to spatial arch bridges. Thus, this article analyses the difference between the structural behavior of spatial arch bridges with Nielsen-type cable arrangements with respect to those with classical vertical hanger configurations. The main goal is to verify whether the known effectiveness of the Nielsen cable arrangement for classical arch bridges is still preserved when applied to spatial arch bridges. In order to achieve this objective, and as the first part of our study, a set of different all-steel bridges composed of vertical and inclined arches with straight decks have been compared for both cable arrangements. As a major conclusion, for planar vertical arch bridges, the Nielsen-type cable arrangement is always the most effective. In addition, it also seems that, for spatial arch bridges composed of a straight deck and an inclined arch, it still keeps most of its effectiveness as long as the arch is moderately inclined.

What was the main factor in successful control of ascariasis in Korea?

  • Seung-Yull Cho;Sung-Tae Hong
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.2
    • /
    • pp.103-126
    • /
    • 2023
  • In the l950s, under the legacy of traditional agriculture, Ascaris lumbricoides, spread epidemically in the war-bitten society of Korea. Consensus on the parasite control was drafted in the Parasite Disease Prevention Act, which passed a parliamentary agreement in 1966, and established safe disposal of feces and mass chemotherapy as control strategies. Biannual stool examinations and treating infected schoolchildren were basic scheme of the control activity through which revenue could be secured for organized business. In the 27 years following 1969, a maximum of 16 million stool examinations had been done every year. Cellophane thick smear enabled the task. The infection declined remarkably in the 1970s when industrialization and green revolution proceeded. A population study of A. lumbricoides in the late 1970s helped us better understand its epidemiology. The data also settled down the understandable protest of teachers against the repeated stool examinations. In the 9 years following 1987, the target population was gradually reduced when the egg positive rate was below 0.1%. An article in the Korean Law, stipulating obligatory stool examinations, was made optional. Although the long-term Korean effort of Ascaris control was a success, the effect of mass chemotherapy was not as succinct in terms of lowering reinfection. In the period of control, Korean agricultural technology changed, and the economy grew and supplied sanitary facilities by which the vicious cycle was disconnected. Reduction of morbidity was a benefit of mass chemotherapy, which is the only control method feasible in economically difficult countries. The most important hurdle of parasite control in the 1960s was poverty of general population and limited financial resources in Korea but the society formed a consensus on the priority of intestinal helminthiasis control during the ordeal period. The national consensus in the 1960s was the critical milestone for Ascaris control in Korea. Under the social agreement, application of timely technical and research advancements in parasitology achieved the success of ascariasis elimination. The successful experience of ascariasis elimination in Korea can be a benchmark for countries where neglected tropical diseases are endemically recycled.

Development of the Command and Data Handling System and Flight Software of BITSE

  • Park, Jongyeob;Baek, Ji-Hye;Jang, Bi-ho;Choi, Seonghwan;Kim, Jihun;Yang, Heesu;Kim, Jinhyun;Kim, Yeon-Han;Cho, Kyung-Suk;Swinski, Joseph-Paul A.;Nguyen, Hanson;Newmark, Jeffrey S.;Gopalswamy, Natchumuthuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.57.4-57.4
    • /
    • 2019
  • BITSE is a project of balloon-borne experiments for a next-generation solar coronagraph developed by a collaboration with KASI and NASA. The coronagraph is built to observe the linearly polarized brightness of solar corona with a polarization camera, a filter wheel, and an aperture door. For the observation, the coronagraph is supported by the power distribution unit (PDU), a pointing system WASP (Wallops Arc-Second Pointer), telemetry & telecommand system SIP (Support Instrument Package) which are developed at NASA's Goddard Space Flight Center, Wallops Flight Facility, and Columbia Scientific Balloon Facility. The BITSE Command and Data Handling (C&DH) system used a cost-off-the-shelf electronics to process all data sent and received by the coronagraph, including the support system operation by RS232/422, USB3, Ethernet, and digital and analog signals. The flight software is developed using the core Flight System (cFS) which is a reusable software framework and set of reusable software applications which take advantage of a rich heritage of successful space mission of NASA. The flight software can process encoding and decoding data, control the subsystems, and provide observation autonomy. We developed a python-based testing framework to improve software reliability. The flight software development is one of the crucial contributions of KASI and an important milestone for the next project which is developing a solar coronagraph to be installed at International Space Station.

  • PDF

A Study on the Development of Technology Roadmap for Construction Automation (건설기계 자동화를 위한 기술 로드맵 개발에 관한 연구)

  • Kim, Young-Suk;Seo, Jong-Won;Lee, Junbok;Kim, Sung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.493-504
    • /
    • 2008
  • Considerable effort has been made to improve construction processes through mechanization and robotization of current work. In this paper, the trend of research and development related to the construction machinery automation to improve the construction productivity has been reviewed. A classification system is proposed for automation of architectural and civil works. Then, the priority among the classified construction tasks for automation has been identified through the questionnaire study. Based on the priority for automation a comprehensive technology road map was also developed. The technology road map suggests the time frame to complete R&D work for the selected construction tasks and the core technology required for automation of the selected tasks. Such automation R&D road map for construction machinery can be utilized as a milestone in setting up the R&D strategy in the construction industry.

Historical Review and Future of Cardiac Xenotransplantation

  • Jiwon Koh;Hyun Keun Chee;Kyung-Hee Kim;In-Seok Jeong;Jung-Sun Kim;Chang-Ha Lee;Jeong-Wook Seo
    • Korean Circulation Journal
    • /
    • v.53 no.6
    • /
    • pp.351-366
    • /
    • 2023
  • Along with the development of immunosuppressive drugs, major advances on xenotransplantation were achieved by understanding the immunobiology of xenograft rejection. Most importantly, three predominant carbohydrate antigens on porcine endothelial cells were key elements provoking hyperacute rejection: α1,3-galactose, SDa blood group antigen, and N-glycolylneuraminic acid. Preformed antibodies binding to the porcine major xenoantigen causes complement activation and endothelial cell activation, leading to xenograft injury and intravascular thrombosis. Recent advances in genetic engineering enabled knock-outs of these major xenoantigens, thus producing xenografts with less hyperacute rejection rates. Another milestone in the history of xenotransplantation was the development of co-stimulation blockaded strategy. Unlike allotransplantation, xenotransplantation requires blockade of CD40-CD40L pathway to prevent T-cell dependent B-cell activation and antibody production. In 2010s, advanced genetic engineering of xenograft by inducing the expression of multiple human transgenes became available. So-called 'multi-gene' xenografts expressing human transgenes such as thrombomodulin and endothelial protein C receptor were introduced, which resulted in the reduction of thrombotic events and improvement of xenograft survival. Still, there are many limitations to clinical translation of cardiac xenotransplantation. Along with technical challenges, zoonotic infection and physiological discordances are major obstacles. Social barriers including healthcare costs also need to be addressed. Although there are several remaining obstacles to overcome, xenotransplantation would surely become the novel option for millions of patients with end-stage heart failure who have limited options to traditional therapeutics.

Advancements in Bispecific Antibody Development and Research Trends (이중특이성 항체의 개발 및 최신동향)

  • Yong Hwan Choi;Ha Seung Song;Su Keun Lee;Chi Hun Song;Ji Hoe Kim;Kyung Ho Han
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.223-242
    • /
    • 2023
  • In contrast to chemical medicines, biopharmaceuticals exhibit reduced side effects and enhanced therapeutic efficacy. Antibody therapies have significantly advanced since the first monoclonal antibody's approval in 1986, now dominating the pharmaceutical market with seven out of the top 10 biopharmaceuticals. The bispecific antibody has a distinct capability to bind to two antigens simultaneously, unlike conventional monoclonal antibodies that target just one antigen. The notion of bispecific antibodies was initially introduced in 1960, and by 1997, the first symmetrical form of bispecific antibody was successfully produced. Subsequently, extensive research has been conducted on bispecific antibodies, leading to a significant milestone in 2014 when blinatumomab became the first FDA-approved drug to treat acute lymphocytic leukemia. Despite having a relatively shorter history compared to monoclonal antibodies, bispecific antibodies have proven their potential by targeting two antigens simultaneously, thereby rendering them highly effective as anti-cancer drugs. As of 2023, there are a total of 11 globally approved bispecific antibodies, with six of them receiving approval from FDA. In light of the rapidly expanding market for bispecific antibodies, this review article comprehensively explores the attributes, historical background, applications, and market status of bispecific antibodies. Additionally, it sheds light on the present trends in bispecific antibody development, drawing insights from 96 research articles and 105 clinical studies. Excitingly, we anticipate further progress in the development of bispecific antibodies and clinical trials on a global scale, with the aspiration of utilizing them not only in cancer treatment but also for addressing diverse medical conditions.