DOI QR코드

DOI QR Code

Advancements in Bispecific Antibody Development and Research Trends

이중특이성 항체의 개발 및 최신동향

  • Yong Hwan Choi (Department of Biological Sciences and Biotechnology, Hannam University) ;
  • Ha Seung Song (Department of Biological Sciences and Biotechnology, Hannam University) ;
  • Su Keun Lee (Department of Biological Sciences and Biotechnology, Hannam University) ;
  • Chi Hun Song (Department of Biological Sciences and Biotechnology, Hannam University) ;
  • Ji Hoe Kim (Department of Biological Sciences and Biotechnology, Hannam University) ;
  • Kyung Ho Han (Department of Biological Sciences and Biotechnology, Hannam University)
  • 최용환 (한남대학교 생명시스템과학과) ;
  • 송하승 (한남대학교 생명시스템과학과) ;
  • 이수근 (한남대학교 생명시스템과학과) ;
  • 송치훈 (한남대학교 생명시스템과학과) ;
  • 김지회 (한남대학교 생명시스템과학과) ;
  • 한경호 (한남대학교 생명시스템과학과)
  • Received : 2023.07.27
  • Accepted : 2023.08.21
  • Published : 2023.09.28

Abstract

In contrast to chemical medicines, biopharmaceuticals exhibit reduced side effects and enhanced therapeutic efficacy. Antibody therapies have significantly advanced since the first monoclonal antibody's approval in 1986, now dominating the pharmaceutical market with seven out of the top 10 biopharmaceuticals. The bispecific antibody has a distinct capability to bind to two antigens simultaneously, unlike conventional monoclonal antibodies that target just one antigen. The notion of bispecific antibodies was initially introduced in 1960, and by 1997, the first symmetrical form of bispecific antibody was successfully produced. Subsequently, extensive research has been conducted on bispecific antibodies, leading to a significant milestone in 2014 when blinatumomab became the first FDA-approved drug to treat acute lymphocytic leukemia. Despite having a relatively shorter history compared to monoclonal antibodies, bispecific antibodies have proven their potential by targeting two antigens simultaneously, thereby rendering them highly effective as anti-cancer drugs. As of 2023, there are a total of 11 globally approved bispecific antibodies, with six of them receiving approval from FDA. In light of the rapidly expanding market for bispecific antibodies, this review article comprehensively explores the attributes, historical background, applications, and market status of bispecific antibodies. Additionally, it sheds light on the present trends in bispecific antibody development, drawing insights from 96 research articles and 105 clinical studies. Excitingly, we anticipate further progress in the development of bispecific antibodies and clinical trials on a global scale, with the aspiration of utilizing them not only in cancer treatment but also for addressing diverse medical conditions.

Keywords

Acknowledgement

This work was supported by the Korea government (MFDS) (22202MFDS178).

References

  1. Walsh G, Walsh E. 2022. Biopharmaceutical benchmarks 2022. Nat. Biotechnol. 40: 1722-1760.  https://doi.org/10.1038/s41587-022-01582-x
  2. Buss NA, Henderson SJ, McFarlane M, Shenton JM, de Haan L. 2012. Monoclonal antibody therapeutics: history and future. Curr. Opin. Pharmacol. 12: 615-622.  https://doi.org/10.1016/j.coph.2012.08.001
  3. Kwon S-I. 2020. Current status of the research and development of bispecific antibodies. Biomed Sci. Lett. 26: 136-148.  https://doi.org/10.15616/BSL.2020.26.3.136
  4. Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. 2018. Bispecific antibodies: design, therapy, perspectives. Drug Des. Devel. Ther. 12: 195-208.  https://doi.org/10.2147/DDDT.S151282
  5. Kontermann RE, Brinkmann U. 2015. Bispecific antibodies. Drug Discov. Today 20: 838-847.  https://doi.org/10.1016/j.drudis.2015.02.008
  6. Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA. 2019. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol. Ther. 201: 103-119.  https://doi.org/10.1016/j.pharmthera.2019.04.006
  7. Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. 2022. Development of therapeutic antibodies for the treatment of diseases. Mol. Biomed. 3: 35. 
  8. Research T. 2022. Bispecific antibodies for cancer market size to grow by USD 396.56 million, emerging bispecific antibody generation platforms to be key trend - Technavio. 
  9. Elshiaty M, Schindler H, Christopoulos P. 2021. Principles and current clinical landscape of multispecific antibodies against cancer. Int. J. Mol. Sci. 22: 5632. 
  10. Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, et al. 2022. Emerging new therapeutic antibody derivatives for cancer treatment. Signal. Transduct. Target. Ther. 7: 39. 
  11. Marrocco I, Romaniello D, Yarden Y. 2019. Cancer immunotherapy: The dawn of antibody cocktails. Methods Mol. Biol. 1904: 11-51.  https://doi.org/10.1007/978-1-4939-8958-4_2
  12. Nishida H. 2021. Rapid progress in immunotherapies for multiple myeloma: An updated comprehensive review. Cancers (Basel). 13: 2712. 
  13. Liu P, Gao X, Lundin V, Shi C, Adem Y, Lin K, et al. 2020. Probing the impact of the Knob-into-hole mutations on the structure and function of a therapeutic antibody. Anal. Chem. 92: 1582-1588.  https://doi.org/10.1021/acs.analchem.9b04855
  14. Ridgway JB, Presta LG, Carter P. 1996. 'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9: 617-621.  https://doi.org/10.1093/protein/9.7.617
  15. Van Blarcom T, Lindquist K, Melton Z, Cheung WL, Wagstrom C, McDonough D, et al. 2018. Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies. MAbs 10: 256-268.  https://doi.org/10.1080/19420862.2017.1406570
  16. Dave E, Adams R, Zaccheo O, Carrington B, Compson JE, Dugdale S, et al. 2016. Fab-dsFv: A bispecific antibody format with extended serum half-life through albumin binding. MAbs 8: 1319-1335.  https://doi.org/10.1080/19420862.2016.1210747
  17. Hao S, Xu S, Li L, Li Y, Zhao M, Chen J, et al. 2022. Tumour inhibitory activity on pancreatic cancer by bispecific nanobody targeting PD-L1 and CXCR4. BMC Cancer 22: 1092. 
  18. Zhao Q, Jiang Y, Xiang S, Kaboli PJ, Shen J, Zhao Y, et al. 2021. Engineered TCR-T cell immunotherapy in anticancer precision medicine: Pros and cons. Front. Immunol. 12: 658753. 
  19. Tabata R, Chi S, Yuda J, Minami Y. 2021. Emerging immunotherapy for acute myeloid leukemia. Int. J. Mol. Sci. 22: 1944. 
  20. Labrijn AF, Janmaat ML, Reichert JM, Parren P. 2019. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18: 585-608.  https://doi.org/10.1038/s41573-019-0028-1
  21. Li H, Er Saw P, Song E. 2020. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell. Mol. Immunol. 17: 451-461.  https://doi.org/10.1038/s41423-020-0417-8
  22. Lim SM, Pyo KH, Soo RA, Cho BC. 2021. The promise of bispecific antibodies: Clinical applications and challenges. Cancer Treat. Rev. 99: 102240. 
  23. Ma J, Mo Y, Tang M, Shen J, Qi Y, Zhao W, et al. 2021. Bispecific antibodies: from research to clinical application. Front. Immunol. 12: 626616. 
  24. Zhou Y, Zong H, Han L, Xie Y, Jiang H, Gilly J, et al. 2020. A novel bispecific antibody targeting CD3 and prolactin receptor (PRLR) against PRLR-expression breast cancer. J. Exp. Clin. Cancer Res. 39: 87. 
  25. Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA. 2006. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 43: 763-771.  https://doi.org/10.1016/j.molimm.2005.03.007
  26. You G, Won J, Lee Y, Moon D, Park Y, Lee SH, Lee SW. 2021. Bispecific antibodies: A smart arsenal for cancer immunotherapies. Vaccines (Basel). 9: 724. 
  27. Chiang SC, Theorell J, Entesarian M, Meeths M, Mastafa M, Al-Herz W, et al. 2013. Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood 121: 1345-1356.  https://doi.org/10.1182/blood-2012-07-442558
  28. Chretien AS, Le Roy A, Vey N, Prebet T, Blaise D, Fauriat C, et al. 2014. Cancer-induced alterations of NK-mediated target recognition: Current and investigational pharmacological strategies aiming at restoring NK-mediated anti-tumor activity. Front. Immunol. 5: 122. 
  29. Horton NC, Mathew PA. 2015. NKp44 and natural cytotoxicity receptors as damage-associated molecular pattern recognition receptors. Front. Immunol. 6: 31. 
  30. Hogarth PM, Pietersz GA. 2012. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat. Rev. Drug Discov. 11: 311-331.  https://doi.org/10.1038/nrd2909
  31. Hynes NE, Lane HA. 2005. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5: 341-354.  https://doi.org/10.1038/nrc1609
  32. Yamaoka T, Kusumoto S, Ando K, Ohba M, Ohmori T. 2018. Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci. 19: 3491. 
  33. Rau A, Lieb WS, Seifert O, Honer J, Birnstock D, Richter F, et al. 2020. Inhibition of tumor cell growth and cancer stem cell expansion by a bispecific antibody targeting EGFR and HER3. Mol . Cancer Ther. 19: 1474-1485.  https://doi.org/10.1158/1535-7163.MCT-19-1095
  34. Yeom DH, Lee YS, Ryu I, Lee S, Sung B, Lee HB, et al. 2020. ABL001, a bispecific antibody targeting VEGF and DLL4, with chemotherapy, synergistically inhibits tumor progression in xenograft models. Int. J. Mol. Sci. 22: 241. 
  35. Jiang H, Ni H, Zhang P, Guo X, Wu M, Shen H, et al. 2021. PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. Oncoimmunology 10: 1943180. 
  36. Kotanides H, Li Y, Malabunga M, Carpenito C, Eastman SW, Shen Y, et al. 2020. Bispecific targeting of PD-1 and PD-L1 enhances T-cell activation and antitumor immunity. Cancer Immunol. Res. 8: 1300-1310.  https://doi.org/10.1158/2326-6066.CIR-20-0304
  37. Stahl S, Graslund T, Eriksson Karlstrom A, Frejd FY, Nygren PA, Lofblom J. 2017. Affibody molecules in biotechnological and medical applications. Trends Biotechnol. 35: 691-712.  https://doi.org/10.1016/j.tibtech.2017.04.007
  38. Frejd FY, Kim KT. 2017. Affibody molecules as engineered protein drugs. Exp. Mol. Med. 49: e306. 
  39. LaFleur DW, Abramyan D, Kanakaraj P, Smith RG, Shah RR, Wang G, et al. 2013. Monoclonal antibody therapeutics with up to five specificities: functional enhancement through fusion of target-specific peptides. MAbs 5: 208-218.  https://doi.org/10.4161/mabs.23043
  40. Mega A, Mebrahtu A, Aniander G, Ryer E, Skold A, Sandegren A, et al. 2023. A PDGFRB- and CD40-targeting bispecific AffiMab induces stroma-targeted immune cell activation. MAbs 15: 2223750. 
  41. Volk AL, Mebrahtu A, Ko BK, Lundqvist M, Karlander M, Lee HJ, et al. 2021. Bispecific antibody molecule inhibits tumor cell proliferation more efficiently than the two-molecule combination. Drugs R D 21: 157-168.  https://doi.org/10.1007/s40268-021-00339-2
  42. Esfandiari A, Cassidy S, Webster RM. 2022. Bispecific antibodies in oncology. Nat. Rev. Drug Discov. 21: 411-412.  https://doi.org/10.1038/d41573-022-00040-2
  43. Wei J, Yang Y, Wang G, Liu M. 2022. Current landscape and future directions of bispecific antibodies in cancer immunotherapy. Front. Immunol. 13: 1035276. 
  44. Cao M, Parthemore C, Jiao Y, Korman S, Aspelund M, Hunter A, et al. 2021. Characterization and monitoring of a novel light-heavy-light chain mispair in a therapeutic bispecific antibody. J. Pharm. Sci. 110: 2904-2915.  https://doi.org/10.1016/j.xphs.2021.04.010
  45. Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. 2023. Antibodies to watch in 2023. MAbs 15: 2153410. 
  46. Kaplan JB, Grischenko M, Giles FJ. 2015. Blinatumomab for the treatment of acute lymphoblastic leukemia. Invest. New Drugs 33: 1271-1279.  https://doi.org/10.1007/s10637-015-0289-4
  47. Knight T, Callaghan MU. 2018. The role of emicizumab, a bispecific factor IXa- and factor X-directed antibody, for the prevention of bleeding episodes in patients with hemophilia A. Ther. Adv. Hematol. 9: 319-334.  https://doi.org/10.1177/2040620718799997
  48. Petrini I, Giaccone G. 2022. Amivantamab in the treatment of metastatic NSCLC: Patient selection and special considerations. Oncol. Targets Ther. 15: 1197-1210.  https://doi.org/10.2147/OTT.S329095
  49. Hua G, Carlson D, Starr JR. 2022. Tebentafusp-tebn: A novel bispecific T-cell engager for metastatic uveal melanoma. J. Adv. Pract. Oncol. 13: 717-723.  https://doi.org/10.6004/jadpro.2022.13.7.8
  50. Shirley M. 2022. Faricimab: First approval. Drugs 82: 825-830.  https://doi.org/10.1007/s40265-022-01713-3
  51. Thieblemont C, Phillips T, Ghesquieres H, Cheah CY, Clausen MR, Cunningham D, et al. 2023. Epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell-engaging antibody, in relapsed or refractory large B-cell lymphoma: Dose expansion in a phase I/II trial. J. Clin. Oncol. 41: 2238-2247. 
  52. Biopharmaceutical Industry Trends Report. 2022. 
  53. Jeong S, Park E, Kim HD, Sung E, Kim H, Jeon J, et al. 2021. Novel anti-4-1BBxPD-L1 bispecific antibody augments anti-tumor immunity through tumor-directed T-cell activation and checkpoint blockade. J. Immunother. Cancer 9: e002428. 
  54. Geuijen C, Tacken P, Wang LC, Klooster R, van Loo PF, Zhou J, et al. 2021. A human CD137xPD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat. Commun. 12: 4445. 
  55. Verkleij CPM, Broekmans MEC, van Duin M, Frerichs KA, Kuiper R, de Jonge AV, et al. 2021. Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma. Blood Adv. 5: 2196-2215.  https://doi.org/10.1182/bloodadvances.2020003805
  56. Zhao Y, Chen G, Chen J, Zhuang L, Du Y, Yu Q, et al. 2023. AK112, a novel PD-1/VEGF bispecific antibody, in combination with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC): an open-label, multicenter, phase II trial. EClinicalMedicine 62: 102106. 
  57. Sung E, Ko M, Won JY, Jo Y, Park E, Kim H, et al. 2022. LAG-3xPD-L1 bispecific antibody potentiates antitumor responses of T cells through dendritic cell activation. Mol. Ther. 30: 2800-2816.  https://doi.org/10.1016/j.ymthe.2022.05.003
  58. Yu S, Zhang J, Yan Y, Yao X, Fang L, Xiong H, et al. 2019. A novel asymmetrical anti-HER2/CD3 bispecific antibody exhibits potent cytotoxicity for HER2-positive tumor cells. J. Exp. Clin. Cancer Res. 38: 355. 
  59. Dalovisio A, Bahlis N, Raje N, Costello C, Dholaria B, Solh M, et al. 2022. P897: Updated results from the ongoing PHASE 1 study of elranatamab, A BCMA targeted T-cell redirecting immunotherapy, for patients with relapsed or refractory multiple myeloma. Hemasphere 6: 788-789. https://doi.org/10.1097/01.HS9.0000846460.44039.3d