• 제목/요약/키워드: middle circular plate

검색결과 5건 처리시간 0.021초

저소음 목재용 회전톱날의 개발에 관한 연구 (A Study of Developing the Low Noise Circular Saw Blade)

  • 강석춘
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.147-155
    • /
    • 2000
  • To reduce the noise from wood cutting saw at the saw mill(lumber mill) or a construction area, some multi-layer sandwich saw blades which a aluminum or copper plate was inserted between the two steel plates were developed and were tested of the wood cutting noise level at various test places. From the research, it was found that the multi-layer saw blade with copper or aluminum plate between steel plates and spot welded 60 points could reduce the wood cutting sound level about 8.3 dB(97.031 dB - 88.743 dB) at indoor test and 3.8 dB(84.805 - 81.638 dB) at field test.

  • PDF

중공롤러의 절단면 형상변화에 따른 변형거동 특성해석 (Characteristic Analysis of Displacement Behavior of Hollow Rollers with Cross Sectional Area Profiles)

  • 정준기;김청균
    • 한국가스학회지
    • /
    • 제19권4호
    • /
    • pp.55-61
    • /
    • 2015
  • 본 연구에서는 여러 가지의 절단면 형상과 하중지지 용량을 높이기 위해 원판을 설치한 중공롤러의 변위거동 특성을 유한요소법으로 해석하였다. FEM 해석결과에 의하면, 중공롤러의 절단면 형상은 외측튜브, 중간튜브, 내측튜브와 이들 튜브들 사이를 연결하기 위해 X형 또는 Y형 컬럼을 설치한 경우는 중공롤러의 중간부에서 발생하는 최대 변위량을 줄여주는 효과가 있다. 여기에 중공롤러의 중간부 두께를 30~40mm 갖는 원판을 설치할 경우는 중공롤러의 최대 변위량을 줄이는데 효과가 크다는 해석결과를 제시하였다. 본 연구에서는 원통롤러의 전체 중량에 연계된 최대 변위량 비율을 고찰한 최적설계 데이터를 제하였다. FEM 해석결과에 의하면, 중공롤러에서 발생하는 최대 변위량과 전체 중량의 비율을 줄인 설계모델로는 4, 5와 6번을 추천할 수 있다.

圓筒이 붙은 平板의 應力解析 (Stress Analysis near a Circular Hole in a Flat Plate Attached to a Cyinder -The Key Subject is the Change of the Cylindrical Shell-Length-)

  • 정인승;이대희;윤갑영
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.770-778
    • /
    • 1986
  • This paper is studied on the Junctiion of the large tank and the cylinderical outlet such as a pressure vessel attached a pipe or nozzle theoretically. It is assumed that the diameter of tank is much larger than that of the nozzle, so it can be approximated that nozzle is attached to plate. The analysis procedure can be viewed as the solution of interdependent subproblems: (a) the stress analysis of the cylinderical shell(nozzle), (b) the plane-stress analysis of the plate membrane problem, and (c) the analysis of the transverse bending deformation in the plate. On the procedure of (a), the Flugge formula are used, and the variables are the length and the ratio of the thickness to the radius of cylinderical shell. The solutions of thess problems are interrelated in the total solution through continuity and equilibrium conditions at the interface of middle planes of the plate and cylinderical shell.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Shear resistance of corrugated web steel beams with circular web openings: Test and machine learning-based prediction

  • Yan-Wen Li;Guo-Qiang Li;Lei Xiao;Michael C.H. Yam;Jing-Zhou Zhang
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.103-117
    • /
    • 2023
  • This paper presents an investigation on the shear resistance of corrugated web steel beams (CWBs) with a circular web opening. A total of five specimens with different diameters of web openings were designed and tested with vertical load applied on the top flange at mid-span. The ultimate strengths, failure modes, and load versus middle displacement curves were obtained from the tests. Following the tests, numerical models of the CWBs were developed and validated against the test results. The influence of the web plate thickness, steel grade, opening diameter, and location on the shear strength of the CWBs was extensively investigated. An XGBoost machine learning model for shear resistance prediction was trained based on 256 CWB samples. The XGBoost model with optimal hyperparameters showed excellent accuracy and exceeded the accuracy of the available design equations. The effects of geometric parameters and material properties on the shear resistance were evaluated using the SHAP method.