• Title/Summary/Keyword: middle cerebral artery occlusion (MCAo)

Search Result 120, Processing Time 0.031 seconds

The Effect of Treadmill Exercise on Ischemic Neuronal Injury in the Stroke Animal Model: Potentiation of Cerebral Vascular Integrity (중풍 동물 모델에서의 트레드밀 운동이 허혈성 신경손상에 미치는 효과: 뇌혈관 통합성 강화)

  • Kang, Kyoung-Ah;Seong, Ho-Hyun;Jin, Han-Byeol;Park, Jong-Min;Lee, Jong-Min;Jeon, Jae-Yong;Kim, Youn-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.2
    • /
    • pp.197-203
    • /
    • 2011
  • Purpose: This study was done to identify whether pre-conditioning exercise has neuroprotective effects against cerebral ischemia, through enhance brain microvascular integrity. Methods: Adult male Sprague-Dawley rats were randomly divided into four groups: 1) Normal (n=10); 2) Exercise (n=10); 3) Middle cerebral artery occlusion (MCAo), n=10); 4) Exercise+MCAo (n= 10). Both exercise groups ran on a treadmill at a speed of 15 m/min, 30 min/day for 4 weeks, then, MCAo was performed for 90 min. Brain infarction was measured by Nissl staining. Examination of the remaining neuronal cell after MCAo, and microvascular protein expression on the motor cortex, showed the expression of Neuronal Nuclei (NeuN), Vascular endothelial growth factor (VEGF) & laminin. Results: After 48 hr of MCAo, the infarct volume was significantly reduced in the Ex+MCAo group ($15.6{\pm}2.7%$) compared to the MCAo group ($44.9{\pm}3.8%$) (p<.05), and many neuronal cells were detected in the Ex+ MCAo group ($70.8{\pm}3.9%$) compared to the MCAo group ($43.4{\pm}5.1%$) (p<.05). The immunoreactivity of laminin, as a marker of microvessels and Vascular endothelial growth factor (VEGF) were intensively increased in the Ex+MCAo group compared to the MCAo group. Conclusion: These findings suggest that the neuroprotective effects of exercise pre-conditioning reduce ischemic brain injury through strengthening the microvascular integrity after cerebral ischemia.

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation

  • Im, Jun Hyung;Yeo, In Jun;Hwang, Chul Ju;Lee, Kyung Sun;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.152-162
    • /
    • 2020
  • Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.

Experimental Effects of Sibjeondaebo-tang and Gamy-Sibjeondaebo-tang on Cerebral Hemodynamics in Cerebral Ischemia Rats (십전대보탕(十全大補湯)과 가미십전대보탕(加味十全大補湯)이 뇌허혈 흰쥐의 뇌혈류역학에 미치는 실험적 영향)

  • Lee, Sang Young;Jeong, Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.173-182
    • /
    • 2013
  • This Study was designed to investigate the effects of Sibjeondaebo-tang (SDT) and Gamy-Sibjeondaebo-tang (GST, Sibjeondaebo-tang adding Cervi Pantotrichum Cornu) on the improvement in regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats, and in the rats with cerebral ischemia induced by middle cerebral artery occlusion, and further to determine the mechanisms. And, It was to investigate the effects of the SDT and GST with the change of histologic examination through the BDNF in the hippocampus CA1. In changes of cerebral hemodynamics, SDT and GST significantly increased rCBF in a dose-dependent manner but decreased MABP in normal rats. In mechanism of cerebral hemodynamics, Increase of GST-induced rCBF was significantly inhibited by pretreatment with methylene blue (0.01 mg/kg, i.p.), an inhibitor of guanylate cyclase, and Decrease of GST-induced MABP was significantly increased by pretreatment with methylene. These results suggested that the action of GST was mediated by guantlate cyclase pathway. In cerebral ischemics, the rCBF was stably improved by SDT (10 mg/kg, i.p.) significantly and stably increased by GST (10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrast with the findings of rapid and marked increase in Control group. These results suggested that GST had anti-ischemic action in cerebral ischemic state. In histological examination through TTC stain, Sample A group and Sample B group decreased discoloration in the cortical part at $28^{th}$ day after MCAO induction. In immunohistochemistric response of BDNF, Sample A group and Sample B group increased respondent effect at $28^{th}$ day after MCAO induction. These results suggest that GST can Increase rCBF in normal state, as well as improve the stability of rCBF in cerebral ischemic state. Furthermore, methylene blue inhibitor study suggested the mechanism of blood flow enhancement by GST may be mediated by guanylate cyclase pathway.

Effect of Improved Forelimb Sensorimotor Function on the Transcranial Direct Current Stimulation in a Focal Ischemic Brain Injury Rat Model (국소 허혈성 뇌손상 흰쥐 모델에서 경두개직류전기자극이 앞다리 운동감각 기능 증진에 미치는 효과)

  • Kim, Gi-Do;Sim, Ki-Cheol;Kim, Kyung-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.273-282
    • /
    • 2011
  • This study was to investigate the effect of improve forelimb sensorimotor function and neurotrophic factor(GAP-43) expression when differing an application time of tDCS in ischemic brain injury rat model(pre, $1^{st}$, $7^{th}$, $14^{th}$). Focal ischemic brain injury was induced in 80 Sprague-Dawley rats through middle cerebral artery occlusion(MCAO) by 'Longa' method. And then experimental groups were randomly divided into four groups; GroupI: MCAO induction, GroupII: application of tDCS(10 min) after MCAO induction, GroupIII: application of tDCS(20 min) after MCAO induction, GroupIV: application of tDCS(30 min) after MCAO induction. Modified limb placing test and single pellet reaching test were performed to test forelimb sensorimotor function. And the histological examination was also observed through the immunohistochemistric response of GAP-43(growth-associated protein-43) in the cerebral cortex. In modified limb placing test, groupIII(p<0.05) showed significantly improve than the other groups on $14^{th}$). day. In single pellet reaching test, groupIII(p<0.01) and groupIV(p<0.05) significantly improved on $14^{th}$) day. And in immunohistochemistric response of GAP-43, group III showed significantly positive response than the other groups on $14^{th}$ day. These results suggest that the intensity(0.1 mA)/time(20 min) condition of tDCS application has a significant impact on the sensorimotor functional recovery in focal ischemic brain injury rat models.

Neuroprotective effect of modified Boyanghwano-Tang and the major medicinal plants, Astragali Radix and Salviae Miltiorrhizae Radix on ischemic stroke in rats (허혈성뇌졸중 흰쥐모델에서 가미보양환오탕(加味補陽還五湯)와 주요 구성약재인 황기(黃芪), 단삼(丹蔘)의 뇌신경보호효과에 대한 연구)

  • Son, Hye-Young;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.25 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • Objectives : In this study, the neuroprotective effects of modified Boyanghwano-Tang (mBHT) and the major medicinal plants, Astragali Radix(AR) and Salviae Miltiorrhizae Radix(SMR) were investigated in transient middle cerebral artery occlusion (tMCAO)-induced ischemic stroke of rats. Methods : mBHT(400 mg/kg) and AR(154 mg/kg) or SMR(62 mg/kg) water extract orally injected in rats after 90 min occlusion of MCA and then allow reperfusion to 24 h. Brain infarction was measured by TTC staining and the expressions of NOS isoforms and apoptotic molecules were determined in ischemic brain by Western blot. Results : The results showed that mBHT has stronger neuropreotective property through inhibitions of the PARP cleaved and caspase-3 activation in ischemic rats, and could reduced infarction volumes comparison of those of AR or SMR, respectively. While, AR extract has an angiogenic property through increasing the expressions of eNOS and VEGF, and SMR extract has a strong anti-inflammatory effects through inhibition of iNOS expression in ischemic brains. Conclusions : These results suggest that mBHT has multifactorial therapeutic advantages through anti-apoptosis, anti-inflammation and angiogenesis for ischemic stroke based on a synergistic combination of ingradients rather than monotherapy.

Effect of Purgative Action with Natrii Sulfas on Brain Edema of MCAO Rats (망초(芒硝)의 사하작용(瀉下作用)이 MCAO 흰쥐의 뇌부종(腦浮腫)에 미치는 영향)

  • Kang, Ho-Chang;Kim, Bum-Hoi;Shim, Eun-Sheb;Kang, Il-Hwan;Kim, Seong-Joon;Kang, Hee;Sohn, Nak-Won
    • The Journal of Korean Medicine
    • /
    • v.30 no.5
    • /
    • pp.77-87
    • /
    • 2009
  • Objectives: This study aimed to evaluate the effect of purgation therapy with Natrii sulfas, an oriental medical therapy for stroke patients with constipation, on physiological indexes and the brain edema of rats. Methods: Brain edema was induced by the middle cerebral artery occlusion (MCAO); Natrii sulfas was administered once after the MCAO. At 3, 6, 15, 24, 48 hours after reperfusion, physiological indexes such as fecal weight, urine volume and water content in stool were assessed, and at 48 hours after reperfusion the edema index was measured. Results: 1. Purgation therapy with Natrii sulfas significantly improved the reduction of fecal weight caused by ischemic insult (P<0.05). 2. Purgation therapy with Natrii sulfas significantly improved the reduction of urine volume caused by ischemic insult (P<0.05). 3. Purgation therapy with Natrii sulfas significantly improved the reduction of water content in stool caused by ischemic insult (P<0.05). 4. Purgation therapy with Natrii sulfas did not improve the neurological symptom caused by ischemic insult. 5. Purgation therapy with Natrii sulfas did not attenuate the total infarct volume caused by ischemic insult. 6. Purgation therapy with Natrii sulfas attenuated the brain edema caused by ischemic insult (P<0.05). Conclusions: These results suggest that purgation therapy with Natrii sulfas improves some important symptoms and has a protective effect on the brain edema caused by ischemic insult.

  • PDF

Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study

  • Choi, Chunggab;Oh, Seung-Hun;Noh, Jeong-Eun;Jeong, Yong-Woo;Kim, Soonhag;Ko, Jung Jae;Kim, Ok-Joon;Song, Jihwan
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.337-344
    • /
    • 2016
  • Intravenous administration of mesenchymal stem cells (IV-MSC) protects the ischemic rat brain in a stroke model, but the molecular mechanism underlying its therapeutic effect is unclear. We compared genomic profiles using the mRNA microarray technique in a rodent stroke model. Rats were treated with $1{\times}10^6$ IV-MSC or saline (sham group) 2 h after transient middle cerebral artery occlusion (MCAo). mRNA microarray was conducted 72 h after MCAo using brain tissue from normal rats (normal group) and the sham and MSC groups. Predicted pathway analysis was performed in differentially expressed genes (DEGs), and functional tests and immunohistochemistry for inflammation-related proteins were performed. We identified 857 DEGs between the sham and normal groups, with the majority of them (88.7%) upregulated in sham group. Predicted pathway analysis revealed that cerebral ischemia activated 10 signaling pathways mainly related to inflammation and cell cycle. IV-MSC attenuated the numbers of dysregulated genes in cerebral ischemia (118 DEGs between the MSC and normal groups). In addition, a total of 218 transcripts were differentially expressed between the MSC and sham groups, and most of them (175/218 DEGs, 80.2%) were downregulated in the MSC group. IV-MSC reduced the number of Iba-$1^+$ cells in the peri-infarct area, reduced the overall infarct size, and improved functional deficits in MCAo rats. In conclusion, transcriptome analysis revealed that IV-MSC attenuated postischemic genomic alterations in the ischemic brain. Amelioration of dysregulated inflammation- and cell cycle-related gene expression in the host brain is one of the molecular mechanisms of IV-MSC therapy for cerebral ischemia.

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Ginkgolide B Modulates BDNF Expression in Acute Ischemic Stroke

  • Wei, Hu;Sun, Tao;Tian, Yanghua;Wang, Kai
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.4
    • /
    • pp.391-396
    • /
    • 2017
  • Objective : To investigate the neuroprotective effects of Ginkgolide B (GB) against ischemic stroke-induced injury in vivo and in vitro, and further explore the possible mechanisms concerned. Methods : Transient middle cerebral artery occlusion (tMCAO) mice and oxygen-glucose deprivation/reoxygenation (OGD/R)-treated N2a cells were used to explore the neuroprotective effects of GB. The expression of brain-derived neurotrophic factor (BDNF) was detected via Western blot and qRT-PCR. Results : GB treatment (4 mg/kg, i. p., bid) significantly reduced neurological deficits, water content, and cerebral infarct volume in tMCAO mice. GB also significantly increased Bcl-2/Bax ratio, reduced the expression of caspase-3, and protected against OGD/R-induced neuronal apoptosis. Meanwhile, GB caused the up-regulation of BDNF protein in vivo and in vitro. Conclusion : Our data suggest that GB might protect the brain against ischemic insult partly via modulating BDNF expression.

Neuropretective effect of Kupunggibodan, Gamisamul-tang and Whangryunhaedok-tang on the ischemia-induced learning and memory deficits by MCAO in the rats (중풍 한방처방전의 효능비교 연구 ; 황련해독탕, 거풍지보단, 가미사물탕이 국소 전뇌허혈에 의한 학습과 기억에 미치는 효과)

  • Lee Bom-Bi;Chung Jin-Yong;Kim Sun-Yeou;Kim Ho-Cheol;Kwon Youn-Jun;Hahm Dae-Hyun;Lee Hae-Jeong;Shim In-Sup
    • Korean Journal of Acupuncture
    • /
    • v.19 no.2
    • /
    • pp.63-78
    • /
    • 2002
  • Kupunggibodan(KU), Gamisamul-tang(GA) and Whangryunhaedok-tang(WH) are clinically the most popular prescriptions as an herbal medicine in the treatment of ischemia. In order to compare and evaluate their protective effects on the ischema-induced cognitive deficits by middle cerebral artery occlusion (MCAO), we examined its ability to improve ischemia-induced cell loss and impairements of learning and memory in the Morris water maze and eight-arm radial arm maze. Focal cerebral ischemia produced a marked cell loss, decrease in acetylcholinesterase(AchE) reactivity in the hippocampus, and learning and memory deficits in two behavioral tasks. Pretreatment with WH (100 mg/kg, p.o.) produced a substantial increase in acquisition in the Morris water maze. Pretreatment with KU increased the perfomance of the resention test in the Morris water maze. WH, KU and GA caused a significant improvement in choice accuracy in radial arm maze test. WH was superior to KU and GA in perfomance of the radial arm maze test. Consistent with behavioral data, staining with cresyl violet showed that pretreatments with WH, but not KU and GA significantly recovered the ischemia-induced cell loss in the hippcampal CA1 area. In addition, pretreatments with WH and KU recovered the ischemia-induced reduction of AchE reactivity in the hippocampal CA1 area. These results demonstrated that KU, GA and WH have protective effects against ischimea-induced learning and memory impairments and that the efficacy was the order of WH>KU>GA in tratment of ischemia induced memory deficits. The present studies provide an evidence of KU, GA and WH as putative treatment of vascular dementia. Supported by a fund from the Ministry of Health and Welfare(HMP-00-OO-04-0004), and the Brain Korea 21 Project from Korean Ministry of Education, Korea.

  • PDF