• Title/Summary/Keyword: mid/high-rise buildings

Search Result 52, Processing Time 0.028 seconds

Comparison between the Egyptian and international codes based on seismic response of mid- to high-rise moment resisting framed buildings

  • Ahmed Ibrahim;Ibrahim El-Araby;Ahmed I. Saleh;Mohammed Shaaban
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.347-361
    • /
    • 2023
  • This research aims to assess the behavior of reinforced concrete (RC) residential buildings when moment-resisting frames (MRFs) are used as the lateral resisting system. This investigation was conducted using MIDAS Gen v.19.0. Buildings with various plan footprints (Square, Rectangular, Circular, Triangular, and Plus-Shaped), and different heights (15 m, 30 m, 45 m, and 60 m) are investigated. The defined load cases, the equivalent static lateral load pattern, and the response spectrum function were defined as stated by the American Standard (ASCE 7-16), the 1997 Uniform Building Code (UBC97), the Egyptian Code for Loads (ECP-201), and the European Standard (EC8). Extensive comparisons of the results obtained by the different codes (including the story displacement, the story drift, and the base shear) were undertaken; to assess the response of moment-resisting multi-story framed buildings under lateral loads. The results revealed that, for all study cases under consideration, both ECP-201 and EC8 gave smaller base shear, displacement, and drift by one third to one fourth, around one fourth, around one fifth, respectively for both the ELF and RSA methods if compared to ASCE 7-16 and UBC97.

Structural Design of Mid-Story SI Tall-building with RC Frame Placed on Steel Structure

  • Isobe, Tomonobu;Aono, Hideshi
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.173-178
    • /
    • 2021
  • In this paper we introduce Shinagawa HEART, located in Shinagawa district, Tokyo. It is a mixed-use building with residences on the upper floors, offices on the lower floors, and commercial uses on the first and second floors, and is intended to meet the various needs of a building on the border between residential and commercial areas. The upper floors of the building are made of reinforced concrete, while the middle and lower floors are made of steel with CFT columns. First, an overview of the structural plan of the building is presented. Next, the adoption of the middle layer seismic isolation and the switch between the lower steel structure and the upper reinforced concrete structure, which are the features of this building, are explained. Finally, the construction method adopted to achieve the design performance is explained.

Optimum position for outriggers of different materials in a high- rise building

  • Nikhil Y. Mithbhakare;Popat D. Kumbhar
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.359-367
    • /
    • 2023
  • High-rise structures are considered as symbols of economic power and leadership. Developing countries like India are also emerging as centers for new high-rise buildings (HRB). As the land is expensive and scarce everywhere, construction of tall buildings becomes the best solution to resolve the problem. But, as building's height increases, its stiffness reduces making it more susceptible to vibrations due to wind and earthquake forces. Several systems are available to control vibrations or deflections; however, outrigger systems are considered to be the most effective systems in improving lateral stiffness and overall stability of HRB. In this paper, a 42-storey RCC HRB is analyzed to determine the optimum position of outriggers of different materials. The linear static analysis of the building is performed with and without the provision of virtual outriggers of reinforced cement concrete (RCC) and pre-stressed concrete (PSC) at different storey levels by response spectrum method using finite element based Extended3D Analysis of building System (ETABS) software for determining responses viz. storey displacement, base shear and storey drift for individual models. The maximum allowable limit and percentage variations in earthquake responses are verified using the guidelines of Indian seismic codes. Results indicate that the outriggers contribute in significantly reducing the storey displacement and storey drift up to 28% and 20% respectively. Also, it is observed that the PSC outriggers are found to be more efficient over RCC outriggers. The optimum location of both types of outriggers is found to be at the mid height of building.

Comparison of Nonlinear Analysis Programs for Small-size Reinforced Concrete Buildings I (소규모 철근콘크리트 건축물을 위한 비선형해석 프로그램 비교 I)

  • Yoo, Changhwan;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.219-228
    • /
    • 2015
  • For small-size reinforce-concrete buildings, Midas Gen, OpenSees, and Perform-3D, which are structural analysis programs that are most popularly used at present, were applied for nonlinear static pushover analysis, and then difference between those programs was analyzed. Example buildings were limited to 2-story frames only and frames with one or more rectangular walls. Analysis results showed that there was not much difference for frames only based on capacity curves. There were some differences for frames with rectangular walls, but it was not so significant. The global behaviors represented by the capacity curve were not so different, but the feature of each analysis program appeared when the results were analyzed in more detail. Therefore, the program users should understand the feature of the program well, and then conduct performance assessment. The result of this study is limited to low-story frames only and frames with rectangular walls so that it should be noted that it is possible to get different results for frames with non-rectangular walls or mid- to high-rise buildings.

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.

Design Strength of Non-symmetric Composite Column for Modular Unit Frames (모듈러 유닛 골조용 비대칭 합성기둥의 설계강도)

  • Park, Keum-Sung;Lee, Sang-Sup;Moon, Ji-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.101-109
    • /
    • 2018
  • Modular structural systems have been used increasingly for low- and mid-rise structures such as school and apartment buildings. Studies have recently been conducted on the application of the modular structural system to high-rise buildings. To provide sufficient resistances and economical construction for the high-rise modular structural system, a composite unit modular structure was proposed. In this study, the strength of the non-symmetric composite column for the proposed composite unit modular structure was investigated through a series of tests. The experimental study focused on the effect of the slenderness of the column, eccentricity, and through bars on the strength of such a column. Design equations for the non-symmetric column for a modular unit structure were also proposed. From the results, it was found that the proposed design equations provide reasonable strength prediction of the non-symmetric composite column for the modular unit structure.

Comparison of behavior of high-rise residential buildings with and without post-tensioned transfer plate system

  • Byeonguk Ahn;Fahimeh Yavartanoo;Jang-Keun Yoon;Su-Min Kang;Seungjun Kim;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.337-348
    • /
    • 2023
  • Shear wall is commonly used as a lateral force resisting system of concrete mid-rise and high-rise buildings, but it brings challenges in providing relatively large space throughout the building height. For this reason, the structure system where the upper structure with bearing, non-bearing and/or shear walls that sits on top of a transfer plate system supported by widely spaced columns at the lower stories is preferred in some regions, particularly in low to moderate seismic regions in Asia. A thick reinforced concrete (RC) plate has often been used as a transfer system, along with RC transfer girders; however, the RC plate becomes very thick for tall buildings. Applying the post-tensioning (PT) technique to RC plates can effectively reduce the thickness and reinforcement as an economical design method. Currently, a simplified model is used for numerical modeling of PT transfer plate, which does not consider the interaction of the plate and the upper structure. To observe the actual behavior of PT transfer plate under seismic loads, it is necessary to model whole parts of the structure and tendons to precisely include the interaction and the secondary effect of PT tendons in the results. This research evaluated the seismic behavior of shear wall-type residential buildings with PT transfer plates for the condition that PT tendons are included or excluded in the modeling. Three-dimensional finite element models were developed, which includes prestressing tendon elements, and response spectrum analyses were carried out to evaluate seismic forces. Two buildings with flat-shape and L-shape plans were considered, and design forces of shear walls and transfer columns for a system with and without PT tendons were compared. The results showed that, in some cases, excluding PT tendons from the model leads to an unrealistic estimation of the demands for shear walls sit on transfer plate and transfer columns due to excluding the secondary effect of PT tendons. Based on the results, generally, the secondary effect reduces shear force demand and axial-flexural demands of transfer columns but increases the shear force demand of shear walls. The results of this study suggested that, in addition to the effect of PT on the resistance of transfer plate, it is necessary to include PT tendons in the modeling to consider its effect on force demand.

Characteristics of Improved Village Image Desired by Local Residents (주거환경개선지구 지역주민의 마을정비 기대특성에 관한 연구)

  • Lee, Yeun-Sook;Heo, Yun-Kyung;Yoon, Hye-Gyung
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.73-83
    • /
    • 2010
  • In urban regeneration, resident participation and respect of residents' need have become a major important issue. The purpose of this study is to identify residential area improvement characteristics expected by local residents. Data used for this study were collected from survey which used questionnaire and village image map construction tool kit, developed for facilitating the residents' participation in an actual housing improvement area at Kwngjoo, Korea. The major contents surveyed through questionnaire were first, future images of the area second, directions of improvement third, preferred architectural types such as high or low rise buildings. and a total of 335 data was collected within 4 days during 12-14 December, 2008. The kit was used by parents of students at a local elementary school, and 205 image maps were collected. Content analysis was to analyse characteristics of villages shown in the constructed image maps. Lynch's five elements were utilized to select areas for analysis. As a result, types of buildings desired by residents at the selected four local areas were identified. In general, residents desired their village to be improved with low and mid rise buildings, respecting existing cultural assets. This study showed that there is certain characteristics in relation to the selected areas. Besides, the tool kit used this study showed the effectiveness in collecting opinions from young households in the improvement area within a short time. The tool is expected to be useful in attracting residents and in facilitating participation of wide range of local residents by improving the constraints stemming from time and space.

Performance of reinforced concrete moment resisting frames in Sarpol-e Zahab earthquake (November 12, 2017, Mw=7.3), Iran

  • Mohammad Amir Najafgholipour;Mehrdad Khajepour
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Reinforced concrete (RC) moment frames are used as lateral seismic load resisting systems in mid- and high-rise buildings in different regions of the world. Based on the seismic design provisions and construction details presented in design codes, RC frames with different levels of ductility (ordinary, intermediate, and special) can be designed and constructed. In Iran, there are RC buildings with various uses which have been constructed based on different editions of design codes. The seismic performance of RC structures (particularly moment frames) in real seismic events is of great importance. In this paper, the observations made on damaged RC moment frames after the destructive Sarpol-e Zahab earthquake with a moment magnitude of 7.3 are reported. Different levels of damage from the development of cracks in the structural and non-structural elements to the total collapse of buildings were observed. Furthermore, undesirable failure modes which are not expected in ductile seismic-resistant buildings were frequently observed in the damaged buildings. The RC moment frames built based on the previous editions of the design codes showed partial or total collapse in this seismic event. The extensive destruction of RC moment frames compared with the other structural systems (such as braced steel frames and confined masonry buildings) was attributed not only to the deficiencies in the construction practice of these buildings but also to the design procedure. In addition, the failure and collapse of masonry infills in RC moment frames were frequent modes of failure in this seismic event. In this paper, the main reasons related to design practice which led to extensive damage in the RC moment frames and their collapse are addressed.

Strengthening sequence based on relative weightage of members in global damage for gravity load designed buildings

  • Niharika Talyan;Pradeep K. Ramancharla
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.131-147
    • /
    • 2024
  • Damage caused by an earthquake depends on not just the intensity of an earthquake but also the region-specific construction practices. Past earthquakes in Asian countries have highlighted inadequate construction practices, which caused huge life and property losses, indicating the severe need to strengthen existing structures. Strengthening activities shall be proposed as per the proposed weighting factors, first at the higher weighted members to increase the capacity of the building immediately and thereafter, the other members. Through this study on gravity load-designed (GLD) buildings, relative weights are assigned to each storey and exterior and interior columns within a storey based on their contribution to the energy dissipation capacity of the building. The numerical study is conducted on mid-rise archetype GLD buildings, i.e., 4, 6, 8, and 10 stories with variable storey heights, in the high seismic zones. Non-linear static analysis is performed to compute weights based on energy dissipation capacities. The results obtained are verified with the non-linear time history analysis of 4 GLD buildings. It was observed that exterior columns have higher weightage in the energy dissipation capacity of the building than interior columns up to a certain building height. The damage in stories is distributed in a convex to concave parabolic shape from bottom to top as building height increases, and the maxima location of the parabola shifts from bottom to middle stories. Relative weighting factors are assigned as per the damage contribution. And the sequence for strengthening activities is proposed as per the computed weighting factors in descending order for regular RCC buildings. Therefore, proposals made in the study would increase the efficacy of strengthening activities.