• Title/Summary/Keyword: microwave-assisted thermal digestion

Search Result 2, Processing Time 0.019 seconds

Rare earth element recovery from coal ash and leaching wastewaters by ecofriendly sequential extraction

  • Siyu Chen;Jae Wan Choe;Han S. Kim
    • Membrane and Water Treatment
    • /
    • v.15 no.4
    • /
    • pp.193-202
    • /
    • 2024
  • It has been reported that rare earth elements (REEs) are considerably present in coal ash. In this study, an ecofriendly sequential extraction method was developed for the effective REE recovery from coal ash and leaching wastewaters. Citrate, a weak and environmentally benign solvent that replaces acetate employed in the existing sequential extraction methods (e.g., European community bureau of reference (BCR) and Tessier methods), was found to be highly effective in leaching REEs from coal ash. Microwave-assisted thermal digestion improved the REE extraction efficiency even further, with an overall leaching rate of 70%, which is 2.54 and 3.76 times higher than the values achieved by the conventional BCR and Tessier methods, respectively. It was also confirmed that the majority of REEs was strongly bound to CaO, Al2O3, Fe2O3, and P2O5, not to SiO2. The sequential extraction method developed in this study is expected to be used as an effective and simple recovery procedure for REEs from coal ash and remaining leaching wastewaters.

The Effect of Strong Acid and Ionic Material Addition in the Microwave-assisted Solubilization of Waste Activated Sludge (Microwave를 이용한 폐활성슬러지의 가용화 반응에서 강산과 이온성 물질의 첨가가 미치는 영향)

  • Lee, Jeongmin;Lee, Jaeho;Lim, Jisung;Kim, Youngwoo;Byun, Imgyu;Park, Taejoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.60-68
    • /
    • 2015
  • The study of waste activated sludge (WAS) solubilization has been increased for sludge volume reduction and enhancing the efficiency of anaerobic digestion. Microwave (MW)-assisted solubilization is an effective method for the solubilization of WAS because this method can lead to thermal, nonthermal effect and ionic conduction by dielectric heating. In this study, the solubilization of WAS by MW heating and conductive heating (CH) was compared and to enhance the MW-assisted solubilization of WAS at low MW output power, chemical agents were applied such as $H_2SO_4$ as the strong acid and $CaCl_2$, NaCl as the ionic materials. Compared to the COD solubilization of WAS by CH, that by MW heating was approximately 1.4, 6.2 times higher at $50^{\circ}C$, $100^{\circ}C$, respectively and the highest COD solubilization of WAS was 10.0% in this study of low MW output power condition. At the same MW output power and reaction time in chemically agents assisted experiments, the COD solubilization of WAS were increased up to 18.1% and 12.7% with the addition of $H_2SO_4$ and NaCl, however, that with the addition of $CaCl_2$ was 10.7%. This result might be due to the fact that the precipitation reaction occurred by calcium ion ($Ca^{2+}$) and phosphate ion (${PO_4}^{3-}$) produced in WAS after MW-assisted solubilization. In this study, $H_2SO_4$ turned out to be the optimal agent for the enhancement of MW efficiency, the addition of 0.2 M $H_2SO_4$ was the most effective condition for MW-assisted WAS solubilization.