DOI QR코드

DOI QR Code

The Effect of Strong Acid and Ionic Material Addition in the Microwave-assisted Solubilization of Waste Activated Sludge

Microwave를 이용한 폐활성슬러지의 가용화 반응에서 강산과 이온성 물질의 첨가가 미치는 영향

  • Lee, Jeongmin (School of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Jaeho (School of Civil and Environmental Engineering, Pusan National University) ;
  • Lim, Jisung (School of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, Youngwoo (School of Civil and Environmental Engineering, Pusan National University) ;
  • Byun, Imgyu (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Park, Taejoo (School of Civil and Environmental Engineering, Pusan National University)
  • 이정민 (부산대학교 사회환경시스템공학부) ;
  • 이재호 (부산대학교 사회환경시스템공학부) ;
  • 임지성 (부산대학교 사회환경시스템공학부) ;
  • 김영우 (부산대학교 사회환경시스템공학부) ;
  • 변임규 (부산대학교 환경기술.산업개발 연구소) ;
  • 박태주 (부산대학교 사회환경시스템공학부)
  • Received : 2014.10.16
  • Accepted : 2015.01.29
  • Published : 2015.01.31

Abstract

The study of waste activated sludge (WAS) solubilization has been increased for sludge volume reduction and enhancing the efficiency of anaerobic digestion. Microwave (MW)-assisted solubilization is an effective method for the solubilization of WAS because this method can lead to thermal, nonthermal effect and ionic conduction by dielectric heating. In this study, the solubilization of WAS by MW heating and conductive heating (CH) was compared and to enhance the MW-assisted solubilization of WAS at low MW output power, chemical agents were applied such as $H_2SO_4$ as the strong acid and $CaCl_2$, NaCl as the ionic materials. Compared to the COD solubilization of WAS by CH, that by MW heating was approximately 1.4, 6.2 times higher at $50^{\circ}C$, $100^{\circ}C$, respectively and the highest COD solubilization of WAS was 10.0% in this study of low MW output power condition. At the same MW output power and reaction time in chemically agents assisted experiments, the COD solubilization of WAS were increased up to 18.1% and 12.7% with the addition of $H_2SO_4$ and NaCl, however, that with the addition of $CaCl_2$ was 10.7%. This result might be due to the fact that the precipitation reaction occurred by calcium ion ($Ca^{2+}$) and phosphate ion (${PO_4}^{3-}$) produced in WAS after MW-assisted solubilization. In this study, $H_2SO_4$ turned out to be the optimal agent for the enhancement of MW efficiency, the addition of 0.2 M $H_2SO_4$ was the most effective condition for MW-assisted WAS solubilization.

폐활성슬러지의 감량화 및 혐기성소화 효율 향상을 위한 가용화 기술로 microwave (MW)에 대한 연구가 활발히 진행되고 있다. MW에 의한 가용화는 유전가열에 의해 가열적, 비가열적 효과 및 이온성 전도를 유도하여 매우 짧은 시간에 반응이 일어나므로 폐활성슬러지의 가용화에 효과적으로 적용될 수 있다. 본 연구에서는 폐활성슬러지 가용화에 대해 전도 가열대비 MW의 우수성을 평가하였고, 고출력 조건에서 수행된 기존 연구들과 달리 저출력 조건에서 MW의 효율 향상을 위해 강산인 $H_2SO_4$ 및 이온성 물질인 $CaCl_2$, NaCl을 촉매로 이용하였다. 전도 가열 대비 MW를 이용한 폐활성슬러지의 가용화 효율은 $50^{\circ}C$ 조건에서 6.2배, $100^{\circ}C$ 조건에서 1.4배 높게 나타났으며, 본 연구의 MW 저출력 조건에서 최대 COD 가용화율은 10.0%로 나타났다. 동일한 MW 출력 및 반응시간 조건에서 촉매물질인 $H_2SO_4$ 및 NaCl의 첨가를 통해 폐활성슬러지의 COD 가용화율이 18.1%, 12.7%로 증가하였으며, $CaCl_2$를 첨가하였을 경우에는 COD 가용화율이 10.7%로 MW의 효율에 향상에 효과가 없는 것으로 나타났다. 이는 가용화 효율을 향상시킬 것으로 예상된 $Ca^{2+}$가 슬러지 가용화에 따라 발생하는 ${PO_4}^{3-}$와 반응하여 침전물 형성에 소모되었기 때문으로 판단된다. 본 연구에서 MW 효율 향상을 위한 가장 적합한 촉매물질은 $H_2SO_4$인 것으로 나타났으며, 0.2 M의 $H_2SO_4$를 첨가한 MW 조건이 폐활성슬러지의 가용화에 가장 효과적인 것으로 나타났다.

Keywords

References

  1. A plan for sewage sludge reduction and biogas production, Ministry of Environment(2012).
  2. Li, Y. Y. and Noike, T., "Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment," Water Sci. Technol., 26(3-4), 857-866(1992).
  3. Wang, Z., Wang, W., Zhang, X. and Zhang, G., "Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor," J. Hazard. Mater., 162(2-3), 799-803(2009). https://doi.org/10.1016/j.jhazmat.2008.05.103
  4. Hwang, E. J., "Effect of alkaline pretreatment on sludge aerobic digestion and fertilizer value," J. Korean Soc. Environ. Eng., 30(1), 90-96(2008).
  5. Zhang, S., Zhang, P., Zhang, G., Fan, J. and Zhang, Y., "Enhancement of anaerobic sludge digestion by high-pressure homogenization," Bioresour. Technol., 118, 496-501(2012). https://doi.org/10.1016/j.biortech.2012.05.089
  6. Lee, S. H., Jung, K. J., Kwon, J. H. and Lee, S. H., "A Study on the Solubilisation of Excess Sludge using Microbubble Ozone," J. Korean Soc. Environ. Eng., 32(4), 325-332(2010)
  7. Seo, J. W., Han, J. S., Ahn, C. M., Min, D. H., Yoo, Y. S., Yoon, S. U., Lee, J. G., Lee, J. Y. and Kim, C. G., "Study on characteristics of solubilization for sewage sludge using electronic field and ultrasonification," J. Korean Soc. Environ. Eng., 33(9), 636-643(2011). https://doi.org/10.4491/KSEE.2011.33.9.636
  8. Weemaes, M. and Verstraete, W. H., "Evaluation of current wet sludge disintegration techniques," J. Chem. Technol. Biotechnol. 73(2), 83-92(1998). https://doi.org/10.1002/(SICI)1097-4660(1998100)73:2<83::AID-JCTB932>3.0.CO;2-2
  9. Solyom, K., Mato, R. B., Perez-Elvira, S. I. and Cocero, M. J., "The influence of the energy absorbed from microwave pretreatment on biogas production from secondary wastewater sludge," Bioresour. Technol., 102(23), 10849-10854(2011) https://doi.org/10.1016/j.biortech.2011.09.052
  10. Chi, Y., Li, Y., Fei, X., Wang, S. and Yuan, H., "Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment," J. Environ. Sci., 23(8), 1257-1265(2011). https://doi.org/10.1016/S1001-0742(10)60561-X
  11. Tyagi, V. K. and Lo, S. L., "Enhancement in mesophilic aerobic digestion of waste activated sludge by chemically assisted thermal pretreatment method," Bioresour. Technol., 119(2), 105-113(2012). https://doi.org/10.1016/j.biortech.2012.05.134
  12. Byun, I. G., Lee, J. H., Lee, J. M., Lim, J. S. and Park, T. J., "Evaluation of nonthermal effects by microwave irradiation in hydrolysis of waste activated sludge," Water Sci. Technol., 70(4), 742-749(2014). https://doi.org/10.2166/wst.2014.295
  13. Qiao, W., Wang, W., Xun, R., Lu, W. and Yin, K., "Sewage sludge hydrothermal treatment by MW irradiation combined with alkali addition," J. Mater. Sci. 43(7), 2431-2436(2008). https://doi.org/10.1007/s10853-007-1957-3
  14. Dogan, I. and Sanin, F. D., "Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method," Water Res. 43(8), 2139-2148(2009). https://doi.org/10.1016/j.watres.2009.02.023
  15. Kunlan, L., Lixin, X., Jun, L., Jun, P., Guoying, C. and Zuwei, X., "Salt-assisted acid hydrolysis of starch to D-glucose under microwave irradiation," Carbohyd. Res., 331(1), 9-12 (2001). https://doi.org/10.1016/S0008-6215(00)00311-6
  16. Li, H. and Xu, J., "Optimization of microwave-assisted calcium chloride pretreatment of corn stover," Bioresour. Technol., 127, 112-118(2013). https://doi.org/10.1016/j.biortech.2012.09.114
  17. The generation and treatment of specified / designated waste (2012), Ministry of Environment(2013).
  18. The generation and treatment of waste(2012), Ministry of Environment(2013)
  19. Eskicioglu, C., Kennedy, K. J. and Droste, R. L., "Enhanced disinfection and methane production from sewage sludge by microwave irradiation," Desalination, 248(1-3), 279-285 (2009). https://doi.org/10.1016/j.desal.2008.05.066
  20. Ahn, J. H., Shin, S. G. and Hwang, S., "Effect of microwave irradiation on the disintegration and acidogenesis of municipal secondary sludge," Chem. Eng. J., 153(1-3), 145-150(2009). https://doi.org/10.1016/j.cej.2009.06.032
  21. Park, W. J., Ahn, J. H., Hwang, S. and Lee, C. K., "Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation," Bioresour. Technol., 101(1), S13-S16(2010) https://doi.org/10.1016/j.biortech.2009.02.062
  22. Yu, Y., Chan, W. I., Liao, P. H. and Lo, K. V., "Disinfection and solubilization of sewage sludge using the microwave enhanced advanced oxidation process," J. Hazard. Mater., 181(1-3), 1143-1147(2010) https://doi.org/10.1016/j.jhazmat.2010.05.134
  23. Byun, I. G., Lee, J. H., Lim, J. S., Lee, J. M. and Park, T. J., "Impact of irradiation time on the hydrolysis of waste activated sludge by the dielectric heating of microwave," Environ. Eng. Res., 19(1), 83-89(2014). https://doi.org/10.4491/eer.2014.19.1.083
  24. Chen, Y., Cheng, J. J. and Creamer, K. S., "Inhibition of anaerobic digestion process: A review," Bioresour. Technol., 99, 4044-4064(2009).
  25. Kuglarz, M., Karakashev, D. and Angelidaki, I., "Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants," Bioresour. Technol., 134, 290-297(2013). https://doi.org/10.1016/j.biortech.2013.02.001
  26. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater. 21sted. American Public Health Association. Washington DC; 2005.
  27. Yu, Q., Lei, H. Y., Li, Z., Li, H. L., Chen, K., Zhang, X. H. and Liang, R. L., "Physical and chemical properties of waste-activated sludge after microwave treatment," Water Res., 44(9), 2841-2849(2010). https://doi.org/10.1016/j.watres.2009.11.057
  28. Eskicioglu, C., Kennedy, K. J. and Droste, R. L., "Enhancement of batch waste activated sludge digestion by microwave pretreatment," Water Environ. Res., 79(11), 2304-2317(2007). https://doi.org/10.2175/106143007X184069
  29. Chang C. J., Taygi, V. K. and Lo, S. L., "Effects of microwave and alkali induced pretreatment on sludge solubilization and subsequent aerobic digestion," Bioresour. Technol., 102(17), 7633-7640(2011). https://doi.org/10.1016/j.biortech.2011.05.031
  30. Eskicioglu, C., Terzian, N., Kennedy, K. J., Droste, R. L. and Hamoda, M., "Athermal microwave effects for enhancing digestibility of waste activated sludge," Water Res., 41(11), 2457-2466(2007). https://doi.org/10.1016/j.watres.2007.03.008
  31. Neyens, E., Baeyens, J., Weemas, M. and De Heyder, B., "Hot acid hydrolysis as a potential treatment of thickened sewage sludge," J. Hazard. Mater., 98(1-3), 275-293(2003). https://doi.org/10.1016/S0304-3894(03)00002-5
  32. Le, N. T., Julcour, C., Ratsimba, B. and Delmas, H., "Improving sewage sludge ultrasonic pretreatment under pressure by changing initial pH," J. Environ. Manage., 128, 548-554(2013). https://doi.org/10.1016/j.jenvman.2013.06.001
  33. Tsubaki, S., Oono. K., Onda. A., Yanagisawa, K. and Azuma, J., "Microwave-assisted hydrothermal hydrolysis of cellobiose and effects of additions of halide salts," Bioresour. Technol., 123, 703-706(2012). https://doi.org/10.1016/j.biortech.2012.07.086
  34. Jin, Y., Li, H., Mahar, R. B., Wang, Z. and Nie, Y., "Combined alkaline and ultrasonic pre-treatment of sludge before aerobic digestion," J. Environ. Sci., 21(3), 279-284(2009). https://doi.org/10.1016/S1001-0742(08)62264-0

Cited by

  1. Feasibility of Microwave for the Solubilization of Cattle Manure and the Effect of Chemical Catalysts Addition vol.39, pp.4, 2017, https://doi.org/10.4491/KSEE.2017.39.4.186