• Title/Summary/Keyword: microstructure theory

검색결과 78건 처리시간 0.02초

Prediction of compressive strength of slag concrete using a blended cement hydration model

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.247-262
    • /
    • 2014
  • Partial replacement of Portland cement by slag can reduce the energy consumption and $CO_2$ emission therefore is beneficial to circular economy and sustainable development. Compressive strength is the most important engineering property of concrete. This paper presents a numerical procedure to predict the development of compressive strength of slag blended concrete. This numerical procedure starts with a kinetic hydration model for cement-slag blends by considering the production of calcium hydroxide in cement hydration and its consumption in slag reactions. Reaction degrees of cement slag are obtained as accompanied results from the hydration model. Gel-space ratio of hardening slag blended concrete is determined using reaction degrees of cement and slag, mixing proportions of concrete, and volume stoichiometries of cement hydration and slag reaction. Furthermore, the development of compressive strength is evaluated through Powers' gel-space ratio theory considering the contributions of cement hydration and slag reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and slag substitution ratios.

Evaluation of Residual Stresses in 12%-Cr Steel Friction Stir Welds by the Eigenstrain Reconstruction Method

  • Jun, Tea-Sung;Korsunsky, Alexander M.
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.15-22
    • /
    • 2015
  • In the present paper we report the results of a study into Friction Stir Welds (FSWs) made in 13 mm-thick 12%-Cr steel plates. Based on residual strains obtained by diffraction techniques, eigenstrain analysis was performed using the Eigenstrain Reconstruction Method (ERM), which is a novel methodology for the reconstruction of full-field residual strain and stress distributions within engineering components. Significant eigenstrain distributions were found at around Thermo-Mechanically Affected Zone (TMAZ) where the most severe plastic deformation was occurred. Microstructure analysis was used to elucidate this phenomenon showing that the grain structure in TMAZ was bent and not successfully recrystallised, resulting in severe deformation behaviour. The reconstructed residual strain distributions by the ERM agree well with the experimental results. It was found that the approach based on theory of eigenstrain is a powerful basis for reconstructing the full-field residual strain/stress distributions in engineering components and structures.

나노스케일 도예 기법: 전기 방사된 나노젯의 코일링 (Nanopottery: coiling of electrospun nanojets)

  • 김성호;장영수;김호영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1863-1868
    • /
    • 2008
  • In an electrospinning process, nanofibers are produced from a droplet of a viscoelastic polymer solution subjected to strong electric field. To date, intrinsic bending instability of the electrical jets has resulted in random piles of nanofibers on a grounded collector plate. Here we report a novel electrospinning process where a hollow micropillar is constructed by the coiling of nanofibers on a sharp grounded collector. We show that the hollow microstructure formation can be explained by the viscous fluid rope coiling theory. The current process can be employed for the fabrication of three-dimensional scaffolds for cell culturing and the three-dimensional nanoprinting.

  • PDF

원자로 압력용기 원주방향 용접부의 잔류응력 해석 (Analysis of Residual Stress on Circumferential Weldment of Reactor Pressure Vessel)

  • 김종성;진태은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.430-434
    • /
    • 2001
  • To perform the integrity evaluation of RPV more realistically, it is necessary to evaluate the metallurgical microstructure and residual stress considering more real phenomena such as multi-pass welding process and PWHT. Accordingly, firstly, this paper proposes the integrated assessment methodology systematically developed for residual stress on weldment of RPV by using thermodynamics, diffusion theory, finite element method and validation experiment. Also, the residual stress on circumferential weldment of reactor pressure vessel is calculated considering multi-pass welding process by the commercial finite element package, ABAQUS.

  • PDF

암호화폐 거래자 사이에 형성되는 정보 비대칭 현상에 관한 연구 (A Study on the Information Asymmetry among Cryptocurrency Traders)

  • 박민정;채상미
    • Journal of Information Technology Applications and Management
    • /
    • 제26권3호
    • /
    • pp.29-41
    • /
    • 2019
  • As users' interests of cryptocurrency has been increased, investment volume of it also increases. In the cryptocurrency market, it cannot always be distributed homogenous information to all investors, similar to the stock market because it reflects the characteristics of a market microstructure. Cryptocurrency traders, thus, like stock investors, can experience the information asymmetry in the market and cannot but help to depend on private information. The purpose of this study is to estimate the trading intensity of informed traders and uninformed traders among cryptocurrency investors around the world based on PIN (Probability of Informed Trading). We have an aim to compare the difference of information asymmetry according to the ten types of cryptocurrency. The results of this study are expected to prevent the continuous increase of suspicious transactions related to cryptocurrency and contribute to the development of a sound cryptocurrency market.

Theory of Charged Clusters Linking Nano Science and Technology to Thin Films

  • Hwang, Nong-Moon
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.20-20
    • /
    • 2002
  • Based on experimental and theoretical analyses, we suggested a new possibility that the CVD diamond films grow not by the atomic unit but by the charged clusters containing a few hundreds of carbon atoms, which form spontaneously in the gas phase [J. Crysta] Growth 62 (1996) 55]. These hypothetical negatively-charged clusters were experimentally confirmed under a typical hot-filament diamond CVD process. Thin film growth by charged clusters or gas phase colloids of a few nanometers was also confirmed in Si and ZrO₂ CVD and appears to be general in many other CVD processes. Many puzzling phenomena in the CVD process such as selective deposition and nanowire growth could be explained by the deposition behavior of charged clusters. Charged clusters were shown to generate and contribute at least partially to the film deposition by thermal evaporation. Origin of charging at the relatively low temperature was explained by the surface ionization described by Saha-Langmuir equation. The hot surface with a high work function favors positive charging of clusters while that of a low work function favors negative charging.

  • PDF

Determination of the linear elastic stiffness and hygroexpansion of softwood by a multilayered unit cell using poromechanics

  • Gloimuller, Stefan;de Borst, Karin;Bader, Thomas K.;Eberhardsteiner, Josef
    • Interaction and multiscale mechanics
    • /
    • 제5권3호
    • /
    • pp.229-265
    • /
    • 2012
  • Hygroexpansion of wood is a known and undesired characteristic in civil engineering. When wood is exposed to changing environmental humidity, it adsorbs or desorbs moisture and warps. The resulting distortions or - at restrained conditions - cracks are a major concern in timber engineering. We herein present a multiscale model for prediction of the macroscopic hygroexpansion behavior of individual pieces of softwood from their microstructure, demonstrated for spruce. By applying poromicromechanics, we establish a link between the swelling pressure, driving the hygroexpansion of wood at the nanoscale, and the resulting macroscopic dimensional changes. The model comprises six homogenization steps, which are performed by means of continuum micromechanics, the unit cell method and laminate theory, all formulated in a poromechanical framework. Model predictions for elastic properties of wood as functions of the moisture content closely approach corresponding experimental data. As for the hygroexpansion behavior, the swelling pressure has to be back-calculated from macroscopic hygroexpansion data. The good reproduction of the anisotropy of wood hygroexpansion, based on only a single scalar calibration parameter, underlines the suitability of the model. The multiscale model constitutes a valuable tool for studying the effect of microstructural features on the macroscopic behavior and for assessing the hygroexpansion behavior at smaller length scales, which are inaccessible to experiments. The model predictions deliver input parameters for the analysis of timber at the structural scale, therewith enabling to optimize the use of timber and to prevent moisture-induced damage or failure.

소결 조건 변화에 따른 직류 피뢰기용 ZnO 바리스터의 미세구조 및 전기적 성질에 관한 연구 (A Study on the Microstructure and Electrical Characteristics of ZnO Varistor for d.c. Arrester)

  • 김석수;최익순;박태곤;조이곤;박춘현
    • 한국전기전자재료학회논문지
    • /
    • 제17권6호
    • /
    • pp.683-689
    • /
    • 2004
  • The microstructure and electrical characteristics of A ∼ C's ZnO varistors fabricated according to variable sintering condition, which sintering temperature was 1130 $^{\circ}C$ and speeds of pusher were A: 2 mm/min, B: 4 mm/min, C: 6 mm/min, respectively, were investigated. The experimental results obtained from this study were summarized as follows: The sintering density of A ∼C's ZnO varistors sintered at 1130 $^{\circ}C$ were decreased by sintering keep time to shorten, such as A: 9hour, B: 4.5hour and C: 3hour. A's ZnO varistor exhibited good densification nearly 98 % of theory density. In the microstructure, A∼C's ZnO varistors fabricated variable sintering condition was consisted of ZnO grain(ZnO), spinel phase(Z $n_{2.33}$S $b_{0.67}$ $O_4$), Bi-rich phasc(B $i_2$ $O_3$), wholly. Varistor voltage of A∼C's ZnO varistors sintered at 1130 $^{\circ}C$ increased in order A

분무주조 고속도공구강의 고온변형 거동에 관한 연구 (A Study on High Temperature Deformation Behavior of Spray-Formed High Speed Steels)

  • 하태권;정재영
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.123-129
    • /
    • 2018
  • In the present study, the mechanical behavior of the spray-formed high speed steel was investigated employing the internal variable theory of inelastic deformation. Special attention was focused on the effect of the microstructure evolution during the hot working process, such as the distribution of carbides to provide a basic database for the production condition of high speed steels with excellent properties. The billets of high speed steel ASP30TM were fabricated by a spray forming, and the subsequently hot-rolled and heat-treated process to obtain uniformly distributed carbide structure. As noted the spray-formed high speed steel showed relatively coarser carbides than hot-rolled and heat-treated one with fine and uniformly distributed carbide structure. The step strain rate tests and high temperature tensile tests were carried out on both the spray-formed and the hot-rolled specimens, to elucidate their high temperature deformation behavior. The spray-formed high speed steel showed much higher flow stress and lower elongation than the hot-rolled and heat-treated steel. During the tensile test at $900^{\circ}C$, the interruption of the deformation for 100 seconds was conducted to reveal that the recovery was a main dynamic deformation mechanism of spray formed high speed steel. The internal variable theory of the inelastic deformation was used to analyze data from the step strain rate tests, revealing that the activation energies for hot deformation of as-spray-formed and hot-worked steels, which were 157.1 and 278.9 kJ/mol, and which were corresponding to the dislocation core and lattice diffusions of ${\gamma}-Fe$, respectively.

Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Drai;Ahmed Amine Daikh;Mohamed Oujedi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Amin Hamdi;Mohamed A. Eltaher
    • Advances in nano research
    • /
    • 제14권3호
    • /
    • pp.211-224
    • /
    • 2023
  • This work presents a modified analytical model for the bending behavior of axially functionally graded (AFG) carbon nanotubes reinforced composite (CNTRC) nanobeams. New higher order shear deformation beam theory is exploited to satisfy parabolic variation of shear through thickness direction and zero shears at the bottom and top surfaces.A Modified continuum nonlocal strain gradient theoryis employed to include the microstructure and the geometrical nano-size length scales. The extended rule of the mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC beams. Carbon nanotubes reinforcements are distributed axially through the beam length direction with a new power graded function with two parameters. The equilibrium equations are derived with associated nonclassical boundary conditions, and Navier's procedure are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear, or sinusoidal mechanical loadings. Numerical results are carried out to investigate the impact of inhomogeneity parameters, geometrical parameters, loadings type, nonlocal and length scale parameters on deflections and stresses of the AFG CNTRC nanobeams. The proposed model can be used in the design and analysis of MEMS and NEMS systems fabricated from carbon nanotubes reinforced composite nanobeam.