• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.029 seconds

Effect of $TiO_2$ on Sintering Behavior of Mixed $UO_2$ and $U_3O_8$ Powder Compacts

  • Song, Kun-Woo;Kim, Keon-Sik;Kang, Ki-Won;Kim, Young-Min;Yang, Jae-Ho;Jung, Youn-Ho
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.455-464
    • /
    • 1999
  • The effect of TiO$_2$ on the sintering behavior of mixed UO$_2$-U$_3$O$_{8}$ Powder compacts has been investigated using the U$_{3}$O$_{8}$ powder made tv oxidation of defective UO$_{2}$ pellets. Without TiO$_2$, UO$_2$ pellet density is inversely proportional to U$_3$O$_{8}$ content and is below 94 %TD in the U$_3$O$_{8}$ range above 15 wt%. Using more than 0.1 wt % TiO$_2$, however, the density decreases slightly with U$_3$O$_{8}$ content and thus is higher than about 94% TD in the whole range of U$_3$O$_{8}$ content. The grain sizes of UO$_2$ pellets with more than 0.1 wt % TiO$_2$are larger than about 30${\mu}{\textrm}{m}$. Therefore, the U$_3$O$_{8}$ Powder can be reused without any restriction on its amount in UO$_2$ pellet fabrication by sintering the mixed UO$_2$-U$_3$O$_{8}$ compact with the aid of TiO$_2$. Mechanisms for densification and grain growth are proposed and discussed, based on a dilatometry study and an examination of microstructure. microstructure.

  • PDF

Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations

  • Kim, Sungyu;Kim, Taeho;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.416-424
    • /
    • 2018
  • Microstructure of oxide formed on Zr-Nb-Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb) and dissolved hydrogen ($H_2$) (30 or 50 cc/kg) for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage) and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of $H_2$ concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at $360^{\circ}C$. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of $OH^-$ ion diffusion and porosity formation, the absence of noticeable effects was discussed further.

Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles (SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: V. Prediction Model for the Phase Transformation Considering the Influence of Prior Austenite Grain Size and Cooling Rate in Weld HAZ of Low Alloyed Steel (용접 열영향부 미세조직 및 재질 예측 모델링: V. 저합금강의 초기 오스테나이트 결정립크기 및 냉각 속도의 영향을 고려한 용접 열영향부 상변태 모델)

  • Kim, Sang-Hoon;Moon, Joon-Oh;Lee, Yoon-Ki;Jeong, Hong-Chul;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.104-113
    • /
    • 2010
  • In this study, to predict the microstructure in weld HAZ of low alloyed steel, prediction model for the phase transformation considering the influence of prior austenite grain size and cooling rate was developed. For this study, six low alloyed steels were designed and the effect of alloying elements was also investigated. In order to develop the prediction model for ferrite transformation, isothermal ferrite transformation behaviors were analyzed by dilatometer system and 'Avrami equation' which was modified to consider the effect of prior austenite grain size. After that, model for ferrite phase transformation during continuous cooling was proposed based on the isothermal ferrite transformation model through applying the 'Additivity rule'. Also, start temperatures of ferrite transformation were predicted by $A_{r3}$ considering the cooling rate. CCT diagram was calculated through this model, these results were in good agreement with the experimental results. After ferrite transformation, bainite transformation was predicted using Esaka model which corresponded most closely to the experimental results among various models. The start temperatures of bainite transformation were determined using K. J. Lee model. Phase fraction of martensite was obtained according to phase fractions of ferrite and bainite.

Effects of Hot Asymmetric Rolling on Microstructure and Formability of Aluminum Alloys (고온 비대칭압연이 알루미늄 합금의 미세조직과 성형성에 미치는 영향)

  • Jeong, Museob;Lee, Jongbeom;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.647-655
    • /
    • 2019
  • In order to analyze the effect of hot asymmetric rolling on the microstructure and texture of aluminum alloy and to investigate the effect of the texture on the formability and plastic anisotropy of aluminum alloy, aluminum 6061 alloy is asymmetrically rolled at room temperature, $200^{\circ}C$, $350^{\circ}C$, and $500^{\circ}C$, and the results are compared with symmetrically rolled results. In the case of asymmetric rolling, the equivalent strain (${\varepsilon}_{eq}$) is greatest in the upper roll part where the rotational speed of the roll is high and increases with increasing rolling temperature. The increase rate of the mean misorientation angle with increasing temperature is larger than that during symmetrical rolling, and dynamic recrystallization occurs the most when asymmetrical rolling is performed at $500^{\circ}C$. In the case of hot symmetric rolling, the {001}<110> rotated cube orientation mainly develops, but in the case of hot asymmetric rolling, the {111}<110> orientation develops along with the {001}<100> cube orientation. The hot asymmetric rolling improves the formability (${\bar{r}}$) of the aluminum 6061 alloy to 0.9 and reduces the plastic anisotropy (${\Delta}r$) to near zero due to the {111}<110> shear orientation that develops by asymmetric rolling.

Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels (알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성)

  • Kim, Sang-Gyu;Kim, Jae-Yoon;Yun, Tae-Hee;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.519-524
    • /
    • 2021
  • The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.

Effect of Centrifugal Casting Thickness on the Mechanical Properties and the Microstructure of Alloy 625 (Alloy 625의 특성과 조직에 미치는 원심주조품 두께의 영향)

  • Lee, Yu-Jung;Kim, Byung-Hoon;Joo, Yun-Kon;Jo, Chang-Yong;Lee, Je-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.42 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • The effect of thickness on the microstructure and the mechanical properties of centrifugal cast 625 was investigated. Centrifugal cast 625 with various thickness of 10, 17 and 50mm showed partially columnar grained structure 8, 12.3 and 18.5mm respectively from the outer surface. Secondary dendrite arm spacing in the columnar grains slightly increased with increasing casting thickness. Tensile strength of the columnar region was similar regardless of casting thickness. Solidification behavior of the columnar grained region is similar to that of directional solidification, thus solidification rate in the centrifugal cast tube was extrapolated from the secondary dendrite arm spacing data of the directionally solidified material. The equiax grained region formed interior of the thick castings. The tensile strength of the equiaxed region showed the average value of the columnar region which is presumably originated from the grain structure rather than secondary dendrite arm spacing.

Effect of Bulk Shape on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 합금의 형상 차이에 따른 기계적 특성 변화)

  • Haeum Park;Yeon Woo Kim;Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Jung Gi Kim;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 2023
  • Although the Ti-6Al-4V alloy has been used in the aircraft industry owing to its excellent mechanical properties and low density, the low formability of the alloy hinders broadening its applications. Recently, laser-powder bed fusion (L-PBF) has become a novel process for overcoming the limitations of the alloy (i.e., low formability), owing to the high degree of design freedom for the geometry of products having outstanding performance used in high-tech applications. In this study, to investigate the effect of bulk shape on the microstructure and mechanical properties of L-PBFed Ti-6Al-4V alloys, two types of samples are fabricated using L-PBF: thick and thin samples. The thick sample exhibits lower strength and higher ductility than the thin sample owing to the larger grain size and lower residual dislocation density of the thick sample because of the heat input during the L-PBF process.

Effect of polypropylene and glass fiber on properties of lightweight concrete exposed to high temperature

  • Abdulnour Ali Jazem Ghanim;Mohamed Amin;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa;Yara Elsakhawy
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.179-190
    • /
    • 2023
  • The effect of glass fibres (GF) and polypropylene fibres (PPF) on the fresh properties and mechanical properties of lightweight concrete (LWC) exposed to high temperatures is investigated in this study. In this study, fifteen LWC mixtures were carried out in three different groups reinforced with PPF or GF fibers by 0%, 0.2%, and 0.4% by volume of concrete. The first group included aluminum powder (AP) as an air agent at 0.03% with the normal weight coarse aggregate (NWCA) by 100% of the weight of coarse aggregate. In the second group, 33% of the NWCA weight was replaced by lightweight coarse aggregate (LWCA). In the third group, 67% of the NWCA weight was replaced by LWCA. The slump, unit weight, Compressive strength (CS), tensile strength (TS), and flexural strength (FS) were examined. For two hours, the CS and FS were subjected to elevated temperatures of 200℃, 400℃, and 600℃, in addition to microstructure analysis of concrete. In comparison to the reference mixture, the fresh properties and bulk density of LWC decreased with the use of the air agent or the replacement of 67% of the NWCA with LWCA. As a result of the fiber addition, both the slump test and the bulk density decreased. The addition of fibers increased the CS; the highest CS was 38.5 MPa when 0.4% GF was added, compared to 28.9 MPa for the reference mixture at the test age of 28 days. In addition, flexural and TS increased by 53% and 38%, respectively, for 0.4% GF mixes. As well as, adding 0.4% GF to LWC maintained a higher CS than other mixtures.

Effect of Multiple Tempering on Microstructure and Mechanical Properties of AISI 4340 Steel (반복 템퍼링이 AISI 4340 강의 미세조직과 기계적 특성에 미치는 영향)

  • Jungbin Park;Junhyub Jeon;Juheon Lee;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2023
  • We investigated the effect of multiple tempering on the microstructure and mechanical properties of AISI 4340 steel. The austenitized and quenched AISI 4340 steels were tempered at 550, 600, and 650℃ for 1, 2, and 4 h by single-tempering (ST). The multiple tempering was conducted for 4 h by double-tempering (DT, 2 h + 2 h), and quadruple-tempering (QT, 1 h + 1 h + 1 h + 1 h). As tempering temperature increases, yield strength and ultimate tensile strength decrease and elongation increases due to recovery and recrystallization of martensite and coarsening of carbides. At 550℃, as the number of tempering cycles increases, the yield strength and tensile strength decrease at the expense of fracture elongation. At 600 and 650℃, the yield strength and tensile strength increase with increasing the number of tempering cycles while fracture elongation maintains similar values. The multiple tempering at the same tempering time of 4 h improves the modulus of toughness at all tempering temperatures, which is presumed to be due to the change in carbide precipitation behavior by multiple tempering.