DOI QR코드

DOI QR Code

Effect of Bulk Shape on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion

Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 합금의 형상 차이에 따른 기계적 특성 변화

  • Haeum Park (Department of 3D Printing Materials, Korea Institute of Materials Science (KIMS)) ;
  • Yeon Woo Kim (Department of 3D Printing Materials, Korea Institute of Materials Science (KIMS)) ;
  • Seungyeon Lee (Department of 3D Printing Materials, Korea Institute of Materials Science (KIMS)) ;
  • Kyung Tae Kim (Department of 3D Printing Materials, Korea Institute of Materials Science (KIMS)) ;
  • Ji-Hun Yu (Department of 3D Printing Materials, Korea Institute of Materials Science (KIMS)) ;
  • Jung Gi Kim (Department of Materials Engineering and Convergence Technology (Center for K-metals), Gyeongsang National University) ;
  • Jeong Min Park (Department of 3D Printing Materials, Korea Institute of Materials Science (KIMS))
  • 박하음 (한국재료연구원 3D프린팅재료연구실) ;
  • 김연우 (한국재료연구원 3D프린팅재료연구실) ;
  • 이승연 (한국재료연구원 3D프린팅재료연구실) ;
  • 최중호 (한국재료연구원 3D프린팅재료연구실) ;
  • 유지훈 (한국재료연구원 3D프린팅재료연구실) ;
  • 김정기 (경상국립대학교 나노.신소재공학부) ;
  • 박정민 (한국재료연구원 3D프린팅재료연구실)
  • Received : 2023.04.14
  • Accepted : 2023.04.27
  • Published : 2023.04.28

Abstract

Although the Ti-6Al-4V alloy has been used in the aircraft industry owing to its excellent mechanical properties and low density, the low formability of the alloy hinders broadening its applications. Recently, laser-powder bed fusion (L-PBF) has become a novel process for overcoming the limitations of the alloy (i.e., low formability), owing to the high degree of design freedom for the geometry of products having outstanding performance used in high-tech applications. In this study, to investigate the effect of bulk shape on the microstructure and mechanical properties of L-PBFed Ti-6Al-4V alloys, two types of samples are fabricated using L-PBF: thick and thin samples. The thick sample exhibits lower strength and higher ductility than the thin sample owing to the larger grain size and lower residual dislocation density of the thick sample because of the heat input during the L-PBF process.

Keywords

Acknowledgement

이 논문은 산업통상자원부가 지원한 소재부품기술개발사업인 "발전 부품 적층 제조를 위한 타이타늄합금 분말 저비용 제조기술 개발" 과제[과제번호: 20013202]의 지원을 받아 수행된 연구 결과입니다.

References

  1. Y. H. Lee, J. T. Yeom, N. K. Park, S. S. Hong, I. O. Shim, S. M. Hwang and C. S. Lee: J. Kor. Inst. Met. & Mater., 43 (2005) 847.
  2. Y. Lee, E. S. Kim, S. Park, J. M. Park, J. B. Jeol, H. S. Kim, T. Lee, H. Sung and J. G. Kim: Met. Mater. Int., 28 (2022) 197. https://doi.org/10.1007/s12540-021-01081-9
  3. D. G. Lee, Y. H. Lee, C. S. Lee and S. Lee: J. Korean Inst. Met. Mater., 42 (2004) 455.
  4. S. G. Pyo, J. K. Oh, N. J. Kim and M. Yamaguchi: J. Korean Inst. Met. Mater., 38 (2000) 629.
  5. F. Q. Li, J. H. Mo, J. J. Li, L. Huang and H. Y. Zhou: Mater. Des., 52 (2013) 337.
  6. T. Y. Kim, M. H. Kang, J. H. Kim, J. K. Hong, J. H. Yu and J. I. Lee: J. Powder Mater., 29 (2022) 99.
  7. Y. Lee, E. S. Kim, S. H. Chun, J. B. Seol, H. Sung, J. S. Oh, H. S. Kim, T. Lee, T. H. Nam and J. G. Kim: J. Powder Mater., 28 (2021) 491.
  8. F. Xiong, C. Huang, O. L. Kafka, Y. Lian, W. Yan, M. Chen and D. Fang: Mater. Des., 199 (2021) 109410.
  9. P. Promoppatum and A. D. Rollett: Mater. Des., 204 (2021) 109658.
  10. B. Vrancken, L. Thijs, J. P. Kruth and J. V. Humbeeck: J. Alloys Compd., 541 (2012) 177.
  11. X. Yu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia and M. Qian: Acta Mater., 85 (2015) 74.
  12. A. Amar, M. Wang, L. Zhang, J. Li, L. Huang, H. Yan, Y. Zhang and Y. Lu: Addit. Manuf., 68 (2023) 103522.
  13. ASTM B213-17, Standard test methods for flow rate of metal powders using the hall flowmeter funnel, ASTM International.
  14. ASTM B527-22, Standard test method for tap density of metal powders and compounds, ASTM International.
  15. K. Dietrich, J. Diller, S. Dubiez-Le Goff, D. Bauer, P. Foret and G. Witt: Addit. Manuf., 32 (2020) 100980.
  16. E. W. C. Rodney, Boyer and Gerhard Welsch, Military handbook titanium and titanium alloys MIL-DBK-697 a.
  17. L. Thijs, J. Van Humbeeck, K. Kempen, E. Yasa and J. P. Kruth: Int. Conf. Adv. Res. Virtual Rapid Prototyp., (2011) 297.
  18. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang and X. Zeng: Mater. Des., 108 (2016) 308.
  19. J. P. Kruth, L. Froyen, J. V. Vaerenbergh, P. Mercelis, M. Rombouts and B. Lauwers: J. Mater. Process. Technol., 149 (2004) 616.
  20. G. E. Dieter and D. J. Bacon: Mechanical Metallurgy, (1961).
  21. P. Krakhmalev, I. Yadroitsava, G. Fredriksson and I. Yadroitsev: Mater. Des., 87 (2015) 380.
  22. M. Pellizzari, B. AlMangour, M. Benedetti, S. Furlani, D. Grzesiak and F. Deirmina: Theor. Appl. Fract. Mech., 108 (2020) 102634.
  23. C. M. Cepeda-Jimenez, F. Potenza, E. Magalini, V. Luchin, A. Molinari and M. T. Perez-Prado: Mater. Char-act., 163 (2020) 110238.
  24. Y. Yang, Y. J. liu, J. Chen, H. L. Wang, Z. Q. Zhang, Y. J. Lu, S. Q. Wu and J. X. Lin: Mater. Sci. Eng. A, 707 (2017) 548.
  25. J. M. Park, P. Asghari-Rad , A. Zargaran, J. W. Bae, J. Moon, H. Kwon, J. Choe, S. Yang, J. H. Yu and H. S. Kim: Acta Mater., 221 (2021) 117426.
  26. J. M. Park, J. Choe, H. K. Park, S. Son, J. Jung, T. S. Kim, J. H. Yu, J. G. Kim and H. S. Kim: Addit. Manuf., 35 (2020) 101333.