• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.039 seconds

Effect of Composition on Cutting Characteristics of Ti(C,N) Cermet Tool (Ti(C,N)계 서메트 공구의 조성변화가 절삭성능에 미치는 영향)

  • 박준석;김경재;김성원;권원태;강신후
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.144-150
    • /
    • 2003
  • When WC and group IV elements are added to Ti(C,N)-Ni substrate, microstructures of the cermet is changed. The microstructure gives direct effect on the property of the material. In this study, the amount of WC and group W elements of Ti(C,N) cermet tool was investigated. The composition of WC was changed from 5 to 20wt% to determine the effect of WC on the cutting performance of cermet tool. The more WC was added, the longer the tool life of the cermet tool was. The cermet with 20wt% WC showed the best fracture toughness. The effect of group W elements; ZrC, ZrN and HfC was also investigated by adding each of them to manufacture the cermet tool with fixed l4wt% WC composition. The cermet with 1wt% ZrC and 14wt% WC showed the best cutting performance among the investigated cermet tools.

Effect of Subzero Treatment on the Microstructure and Mechanical Properties of Austempered Ductile Cast Iron (오스템퍼드 구상흑연주철의 미세조직 및 기계적 성질에 미치는 서브제로처리의 영향)

  • Lee, K.H.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • This study was investigated the effect of subzero treatment in austempered ductile cast iron. Retained austenite transformed to martensite by subzero treatment and strain. With decreasing subzero treatment temperature and increasing strain, retained austenite transformed more to martensite and transformed 30% above by subzero treatment at $-196^{\circ}C$. With decreasing subzero treatment temperature, the value of strength and ratio of increasing of strength, hardness and ratio of increasing of hardness increased but the value of elongation and ratio of decreasing of elongation decreased. With decreasing subzero treatment temperature, impact value and ratio of decreasing of impact value decreased. In case of subzero treatment at $-196^{\circ}C$, hardness value increased about 18% and impact value decreased above 20%. We could find that in subzero treated specimens had a little of effect on the tensile properties but had very much effect on the hardness and value of the impact.

  • PDF

The Effect of Recasting on the Corrosion behavior of Ni-Cr alloy for Porcelain Fused to Metal Crown (도재용착주조관용 Ni-Cr 합금의 반복주조가 부식거동에 미치는 영향)

  • Bae, Soo-Hyun;Kim, Bu-Sob;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.355-366
    • /
    • 2006
  • The purpose of this study was to determine if repeated casting has a detrimental effect on the corrosion behavior of nickel-chrome casting alloys. The X-ray diffraction analysis, vickers hardness test, SEM, EDX and corrosion test were performed to determine the effects of recasting on chemical composition, microstructure, physical property, castability and corrosion behavior of nickel-chrome casting alloys. The X-ray diffraction analysis results for the cast and recast specimens of the VeraBond and the Rexillium V showed that major crystal phase contained nickel-chrome compounds, Nickel carbide and Chrome carbide. Microstructure analysis results for the cast and recast specimens of the VeraBond and the Rexillium V showed recasting has no effect on microstructure. EDX analysis results indicated the percentage of the main component nickel(Ni) in the specimens of the VeraBond showed a tendency to increase with recasting, but those of other components Carbon(C) showed a tendency to decrease with recasting, Chrome(Cr), Silicon(Si), Aluminium(Al) and molybdenum(Mo) showed no changes in the percentage. The percentage of the main component nickel(Ni) in the specimens of the Rexillium V showed a tendency to increase with recasting, but those of other components silicon(Si), carbon(C) and molybdenum(Mo) showed a tendency to decrease with recasting, chrome(Cr) and aluminium(Al) showed no changes in the percentage. The vickers hardness results for the cast and recast specimens of the VeraBond and the Rexillium V showed a tendency to decrease with recasting, but the differences for the first to fifth cast were not statistically significant. The castability results for the cast and recast specimens of the VeraBond and the Rexillium V showed a tendency to decrease with recasting, but the differences for the first to fifth cast were not statistically significant. The cast and recast specimens of the VeraBond and the Rexillium V showed no differences in the corrosion resistance. The results indicate that the VeraBond and the Rexillium V can be safely recast.

  • PDF

Effect of Strip-cast Conditions on the Formation of Microstructures in Nd-Fe-B alloys (Strip-cast 조건이 Nd-Fe-B 합금의 미세조직 형성에 미치는 영향)

  • Lee, D.H.;Jang, T.S.;Kim, D.H.;Kim, Andrew S.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.34-40
    • /
    • 2002
  • In order to improve the microstructure of the strip cast Nd-Fe-B alloys that are frequently used for production of high energy sintered magnets, influence of various strip casting conditions on the microstructure and phase formation and distribution were investigated. Nd-Fe-B strips consisting of microstructures suitable for preparation of high energy sintered magnets could be obtained when the wheel speed was below 5 m/s. The compositional limit that can avoid the crystallization of free iron in the as-cast state was estimated to be Nd$\_$14/Fe$\_$79/B$\_$7/. Regardless of the compositional variation, <001> preferred orientation of Nd$_2$Fe$\_$14/B normal to the strip surface was always occurred below 5 m/s, which would eventually enhance the grain alignment during pressing the powder under a magnetic field. While the coercivity of the strip cast alloys increased with the increase of the wheel speed, mainly due to the refinement of Nd$_2$Fe$\_$14/B grains, it decreased with the reduction of Nd content in the alloy composition as the formation of free iron increased.

Microstructure Evolution and Dielectric Characteristics of CaCu3Ti4O12 Ceramics with Sn-Substitution

  • Kim, Cheong-Han;Oh, Kyung-Sik;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.87-91
    • /
    • 2013
  • The doping effect of Sn on the microstructure evolution and dielectric properties was studied in $CaCu_3Ti_{4-x}Sn_xO_{12}$ polycrystals. Samples were produced by a conventional solid-state reaction method. Sintering was carried out at $1115^{\circ}C$ for 2-16 h in air. The dielectric constant and loss were examined at room temperature over a frequency range between $10^2$ and $10^6$ Hz. The microstructure was found to evolve into three stages. Addition of $SnO_2$ led to an increase in density and advanced formation of abnormal grains. The formation of coarse grains with a reduced thickness of the boundary brought about an enhanced dielectric constant and a lower dielectric loss below ~1 kHz. EDS data showed the Cu-rich phase along the grain boundary, which should contribute to the improved dielectric constant according to the internal barrier layer capacitor model. After all, $SnO_2$ was an effective dopant to elevate the dielectric characteristics of $CaCu_3Ti_{4-x}Sn_xO_{12}$ polycrystals as a promoter for abnormal grain growth.

Effects of Alpha Phase on the Fatigue Properties of Fe-29%Ni-17%Co Low Thermal Expansion Alloy (Fe-29%Ni-17%Co 저열팽창 합금의 피로 특성에 미치는 알파상의 영향)

  • Kim, Min-Jong;Gwon, Jin-Han;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.481-487
    • /
    • 2014
  • The effect of alpha phase on the fatigue properties of Fe-29%Ni-17%Co low thermal expansion alloy was investigated. Two kinds of alloys (Base alloy and Alpha alloy) were prepared by controlling the minimal alloy composition. Microstructure observation, tensile, high-cycle fatigue, and low-cycle fatigue results were measured in this study. The Base alloy microstructure showed typical austenite ${\gamma}$ phase. Alpha alloy represented the dispersed phase in the austenite ${\gamma}$ matrix. As a result of tensile testing, Alpha alloy was found to have higher strengths (Y.S. & T.S.) and lower elongation compared to those of the Base alloy. High cycle fatigue results showed that Alpha alloy had a higher fatigue limit (360MPa) than that (330MPa) of the Base alloy. The Alpha alloy exhibited the superior high cycle fatigue property in all of the fatigue stress conditions. SEM fractography results showed that the alpha phase could act to effectively retard both fatigue crack initiation and crack propagation. In the case of low-cycle fatigue, the Base alloy had longer fatigue life in the high plastic strain amplitude region and the Alpha alloy showed better fatigue property only in the low plastic strain amplitude region. The fatigue deformation behavior of the Fe-29%Ni-17%Co alloy was also discussed as related with its microstructure.

Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

  • Kim, Nam In;Kim, Young Sik;Kim, Kyung Soo;Chang, Hyun Young;Park, Heung Bae;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001~0.075% were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel.

Effect of $\alpha-SiC $seed on microstructure and fracture toughness of pressureless-sintered $\beta-SiC$ ($\alpha-SiC $seed의 첨가가 상압소결된 $\beta-SiC$의 미세구조와 파괴인성에 미치는 영향)

  • Young-Wook Kim;Won-Joong Kim;Kyeong-Sik Cho;Heon -Jin Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 1997
  • $\beta-SiC $powder with or without the addition of 1 wt% of $\alpha-SiC$ particles (seeds) was pressureless-sintered at $1950^{\circ}C$ for 0.5, 2 and 4 h using $Y_3Al_5O_{12}$ (yttrium aluminum garnet, YAG) as a sintering aid. The introduction of $\alpha-SiC$ seeds into $\beta-SiC$ accelerated :he grain growth of elongated large grains during sintering, resulting in the coarser microstructure. The fracture toughnesses of materials with $\alpha$-SiC seeds and without $\alpha-SiC$ seeds sintered for 4 h were 7.5 and 6.1 $MPa\cdot \textrm m^{1/2}$, respectively. Higher fracture toughness of the material with seeds was due to the enhanced bridging by elongated grains, resulting from coarser microstructure.

  • PDF

Evaluation of Microstructure and Mechanical Properties in 17-4PH Stainless Steels Fabricated by PBF and DED Processes (PBF와 DED 공정으로 제조된 17-4PH 스테인리스 강의 미세조직 및 기계적 특성 평가)

  • Yoon, Jong-Cheon;Lee, Min-Gyu;Choi, Chang-Young;Kim, Dong-Hyuk;Jeong, Myeong-Sik;Choi, Yong-Jin;Kim, Da-Hye
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2018
  • Additive manufacturing (AM) technologies have attracted wide attention as key technologies for the next industrial revolution. Among AM technologies using various materials, powder bed fusion (PBF) processes and direct energy deposition (DED) are representative of the metal 3-D printing process. Both of these processes have a common feature that the laser is used as a heat source to fabricate the 3-D shape through melting of the metal powder and solidification. However, the material properties of the deposited metals differ when produced by different process conditions and methods. 17-4 precipitation-hardening stainless steel (17-4PH SS) is widely used in the field of aircraft, chemical, and nuclear industries because of its good mechanical properties and excellent corrosion resistance. In this study, we investigated the differences in microstructure and mechanical properties of deposited 17-4PH SS by PBF and DED processes, including the heat treatment effect.

Phase Transformation and Microstructural Change of Alumina Membrane (알루미나 여과막의 상전이와 미세구조 변화)

  • Cheong, Hun;Choi, Duck-Kyun;Cheong, Deck-Soo
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.619-623
    • /
    • 2000
  • Alumina membrane was prepared by sol-gel coating method using boehmite powder(${\Upsilon}-AlOOH$). The supported and the unsupported alumina membrane were fabricated to investigate the phase transformation and change of microstructure. It is important to control the homogeneous pore size and distribution in application of filtering process. The ${\theta}-to\;{\alpha}-AL_2O_3$ phase transformation (XRD) and the change of microstructure was investigated using scanning electron microscopy(SEM). XRD patterns showed that the supported membrane had $100^{\circ}C$ higher ${\theta}-to\;{\alpha}-AL_2O_3$ transformation temperature compared to the unsupported membrane. The similar effect was also observed for microstructural change of the membrane.

  • PDF