• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.027 seconds

Resistance of concrete made of fibers in weight lifting slabs against impact in sports training

  • Zhi Li
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.325-336
    • /
    • 2023
  • A significant component of many civil constructions such as buildings, reservoirs, bridges, and sports halls, concrete has become increasingly popular due to its versatile properties. Concrete's internal characteristics change due to the use of different types of fibers, including changes in its microstructure, volume, and hole dimensions. Additionally, the type, dimensions, and distribution of fibers in concrete can affect the results of flexural strength tests by affecting its compressive and tensile strength. Due to a lack of information, fiber concrete is a new composite material in the production industry that requires laboratory studies to determine its behavior. This study investigated the bending behavior of multilayer slabs made of concrete reinforced by polyamide-propylene fibers against impact in weight lifting exercises. Results showed that adding fibers to concrete slab samples improved the mechanical properties while replacing them hurt the mechanical properties and failure of polymer fiber-reinforced concrete. On the other hand, adding and replacing fibers increases durability and has a positive effect.

The effect of metal composition on the structure and properties of Ti-Cu-N superhard nanocomposite coatings

  • Myung, Hyun S.;Lee, Hyuk M.;Han, Jeon G.
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.5
    • /
    • pp.429-434
    • /
    • 2001
  • Ti-Cu-N nanocomposite films deposited by arc ion plating and magnetron sputter hybrid system with various copper contents. The microstructure and mechanical properties of Ti-Cu-N superhard nanocomposite films depend on the Cu concentration. In X-ray diffraction (XRD) analysis, intensity of TiN (111) and TiN (220) peak decreased and peak broadness increased with increasing the copper contents and Cu peak was not detected. The grain size of films decreased with increasing at%Cu and Transmission Electron Microscopy (TEM) analysis also showed that Ti-Cu-N film containing 1.5at%Cu was composed of very fine (<10nm) nanocrystalline grains. The maximum hardness of Ti-Cu-N (1.5at%Cu) film reached to 45GPa and friction coefficient was measured 0.3.

  • PDF

Gd effect on microstructure and properties of the Modified-690 alloy for function structure integrated thermal neutron shielding

  • Cheng Zhang;Jie Pan;Zixie Wang;Zhaoyu Wu;Qiliang Mei;Qianxue Ding;Jing Gao;Xueshan Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1541-1558
    • /
    • 2023
  • The new Modified-690Gd alloy, namely as Ni-30Cr-(10-x) Fe-xGd (x = 0.5, 1.0, 1.5,2.0, 3.0 wt%) for function structure integrated thermal neutron shielding has been prepared and characterized. The Modified-690Gd alloy was mainly composed of γ austenite matrix and (Ni, Cr, Fe)5Gd precipitated along grain boundaries. The new Modified-690Gd alloy had great mechanical properties, which had the tensile strength exceeding 620 MPa and the elongation being above 50%. Meanwhile, this alloy had excellent weldability and good corrosion resistance in boric acid. The new Modified-690Gd alloy is expected to be a kind of high efficiency thermal neutron shielding materials.

Performance Evaluation of Cement Composites Mixed with Multi-Wall Carbon Nanotube and Nanosilica (다중벽 탄소나노튜브와 나노실리카를 혼입한 시멘트 복합체의 성능 평가)

  • Kim, Seong Woo;Son, Jeong Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.185-186
    • /
    • 2023
  • Recently, a lot of nano-scale material technology development and research have been conducted in construction fields to improve the compressive strength and durability of cement-based Composites. There are some studies that have confirmed the properties and application effects of cement-based complex using each nanomaterial, but development and research using both materials are relatively limited. This study sought to confirm the effect of multi-wall carbon nanotubes (MWCNT) and nanosilica, which are representative construction nanomaterials, on the compressive strength, voids, and microstructure formation of cement. The purpose was to produce a cement composite by changing the mixing rate of the two nanomaterials, and to find the optimal mixing amount considering its mechanical and rheological properties.

  • PDF

Microstructures and Mechanical Properties of Repair Materials Using CSA and ACA-based Binders (CSA 및 ACA계 결합재를 적용한 보수재료의 미세구조 및 역학적 성능)

  • Seung-Tae Lee;Hoon-Shin Chung;Tae-Han Kwon;Yong Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.202-209
    • /
    • 2023
  • In this study, microstructures and mechanical properties of repair materials using calcium sulfoaluminate (CSA) and/or amorphous calcium aluminate (ACA) cements were experimentally investigated. By XRD ansysis, the hydrates formed in repair materials were identified. In addition, the microstructures of repair materials were visually examined through SEM observation. Setting time of mortars made with repair materials were measured. The strength development and ultrasonic velocity of the mortars were also evaluated at the predetermined ages. As a result, it seems that ACA showed a benefit effect with respect to mechanical properties of mortars.

Strength improvement and micro analysis of limestone-slag cement : role of aluminum sulfate (석회석슬래그 시멘트의 강도향상 및 미세분석 : 황산알루미늄의 역할)

  • Wang, Yi-Sheng;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.161-162
    • /
    • 2023
  • Limestone slag cement is a green and sustainable building material with huge market potential. However, its shortcoming of low early compressive strength needs to be improved. A method of using aluminum sulfate to improve the early strength of ternary mixed mortar was proposed, and its effect and optimal dosage were tested. Macroscopic properties such as mechanical properties and surface electrical resistivity were measured at different dosages (0%, 1%, 2%, 3%). The microstructure and products of the mixtures were tested in detail, including by scanning electron microscopy, thermogravimetric analysis, and X-ray diffraction. The results show aluminum sulfate enhances mechanical properties and significantly increases surface electrical resistivity. The 1% and 2% doses had no adverse effects on the 28-day mechanical properties, while the 3% dose reduced the 28-day strength. Considering the changes in mechanical properties and surface electrical resistivity, 1% aluminum sulfate is the optimal dosage.

  • PDF

FABRICATION OF AGAR-SILICA AEROGEL NANOCOMPOSITE FILMS

  • MIN-JIN LEE;HYUN-AH JUNG;KYONG-JIN LEE;HAEJIN HWANG
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.851-855
    • /
    • 2019
  • In this study, agar-based nanocomposite films containing ultra-porous silica aerogel particles were fabricated by gel casting using an aqueous agar/silica aerogel slurry. The silica aerogel particles did not show significant agglomeration and were homogeneously distributed in the agar matrix. Transmission electron microscopy observations demonstrated that the silica aerogel particles had a mesoporous microstructure and their pores were not incorporated into the agar polymer molecules. The thermal conductivities of the agar and agar/5 wt.% silica aerogel nanocomposite films were 0.36 and 0.20 W·m-1·K-1, respectively. The transmittance of the agar films did not decrease upon the addition of silica aerogel particles into them. This can be attributed to the anti-reflection effect of silica aerogel particles.

Characterization of Compacted and Pressureless Sintered Parts for Molybdenum Oxide Powder according to Hydrogen Reduction Temperature (수소 환원 온도에 따른 몰리브덴 산화물의 성형 및 상압소결특성 평가)

  • Jong Hoon Lee;Kun-Jae Lee
    • Journal of Powder Materials
    • /
    • v.31 no.4
    • /
    • pp.336-341
    • /
    • 2024
  • Molybdenum, valued for its high melting point and exceptional physical and chemical properties, is studied in diverse fields such as electronics, petrochemicals, and aviation. Among molybdenum oxides, molybdenum dioxide stands out for its higher electrical conductivity than other transition metal oxides due to its structural characteristics, exhibiting metallic properties. It is applied as pellets to gas sensors, semiconductors, and secondary batteries for its properties. Thus, research on molybdenum dioxide compaction and pressureless sintering is necessary, yet research on pressureless sintering is currently insufficient. This study synthesized MoO3 powder via solution combustion synthesis and reduced it using the 3% hydrogen/argon gas mixture to investigate the effect of reduction temperature on the powder. Additionally, the reduced powder was compacted and subjected to pressureless sintering with temperature as a variable. The density and the microstructure of brown parts were analyzed and discussed.

Microstructural, mechanical, and electrochemical analysis of carbon doped AISI carbon steels

  • Muhammad Ishtiaq;Aqil Inam;Saurabh Tiwari;Jae Bok Seol
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.10.1-10.15
    • /
    • 2022
  • The effect of carbon doping contents on the microstructure, hardness, and corrosion properties of heat-treated AISI steel grades of plain carbon steel was investigated in this study. Various microstructures including coarse ferrite-pearlite, fine ferrite-pearlite, martensite, and bainite were developed by different heat treatments i.e. annealing, normalizing, quenching, and austempering, respectively. The developed microstructures, micro-hardness, and corrosion properties were investigated by a light optical microscope, scanning electron microscope, electromechanical (Vickers Hardness tester), and electrochemical (Gamry Potentiostat) equipment, respectively. The highest corrosion rates were observed in bainitic microstructures (2.68-12.12 mpy), whereas the lowest were found in the fine ferritic-pearlitic microstructures (1.57-6.36 mpy). A direct correlation has been observed between carbon concentration and corrosion rate, i.e. carbon content resulted in an increase in corrosion rate (2.37 mpy for AISI 1020 to 9.67 mpy for AISI 1050 in annealed condition).

Development of Admixed Lubricant for Warm Die and Warm Compaction of High-Density PM Iron

  • Min Chul Oh;Byungmin Ahn
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.3
    • /
    • pp.679-682
    • /
    • 2021
  • The objective of the present research is to develop new admixed lubricants which can be used for high-density sintered iron when processed using warm die and warm compaction. Depending on various lubricants, the effect of compaction temperature on the ejection behavior and sintered properties was studied. Lubricants were prepared by mixing of Zn-stearate and ethylene bis stearamide (EBS) in various compositions. The iron powders blended with lubricants were compacted under the pressure of 700 MPa at various temperatures. The green compacts were sintered at 1120℃ for 30 min. Microstructure, density, hardness, and transverse rupture strength of sintered materials with different lubricants were investigated in detail.