• 제목/요약/키워드: microstructure control

검색결과 500건 처리시간 0.029초

레이저 위빙을 이용한 Al 6k21-T4 합금의 용접 강도 향상 (A Study to Improve Weld Strength of Al 6k21-T4 Alloy by using Laser Weaving Method)

  • 김병훈;강남현;박용호;안영남;김철희;김정한
    • Journal of Welding and Joining
    • /
    • 제27권4호
    • /
    • pp.49-53
    • /
    • 2009
  • For Al 6k21-T4 alloy, linear laser welding produced the lower shear-tensile strength than the base metal. This study improved the shear-tensile strength by using the weaving laser at the optimized welding condition, i.e., 2mm weaving width and 25Hz frequency. The large weaving width increased the weld width, therefore improving the joint strength. For the specimen of low strength, the porosity was distributed continuously along the intersection between the plates and fusion line. However, for the optimized welding condition, large oval-shaped porosities were located only in the advancing track of the concave part. Regardless of the welding condition, solidification cracking was initiated at the intersection and propagated through small porosities in the weld part. furthermore, the concave part had more significant porosity in the weld and HAZ, respectively than the convex part. The continuity of porosities played a key role to determine the strength. And, the weaving width was an important parameter to control the strength.

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

카본 및 보론 첨가가 탄화규소 열간 가압 소결거동 및 기계적 특성에 미치는 영향 (Effect of carbon and boron addition on sintering behavior and mechanical properties of hot-pressed SiC)

  • 안종필;채재홍;김경훈;박주석;김대근;김형순
    • 한국결정성장학회지
    • /
    • 제18권1호
    • /
    • pp.15-21
    • /
    • 2008
  • 탄화규소(SiC)는 산화저항성, 내식성, 고온 강도 및 열전도 특성 등의 기계적 특성이 매우 우수한 재료로 알려져 있지만, 강한 공유결합성으로 인하여 그 소결이 매우 어려운 재료이다. 본 연구에서는 치밀한 탄화규소 소결체를 제조하기 위하여 카본 및 보론을 소결 첨가제로하여 열간 가압 소결법을 적용하여 탄화규소 소결체를 제작하여 그 특성을 평가하였다. 카본의 첨가는 탄화규소의 소결을 촉진하는 역할을 하여 비정상 입성장을 억제하기 때문에 미세하고 균일한 미세구조를 형성하였기 때문에 탄화규소 소결체의 기계적 특성을 향상시키는 것을 확인 할 수 있었다. 또한 차본의 첨가는 소결 중 보론의 첨가에 의해 발생하는 탄화규소의 6H 구조에서 4H 구조로의 상전이를 억제함을 알 수 있었다.

표면처리 시간에 따른 임플란트 미세구조의 변화;HA와 양극산화 표면 임플란트 (Micromorphometric change of implant surface conditioned with tetracycline-HCI;HA and oxidized surface)

  • 안상호;박준봉;권영혁;허익;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제35권4호
    • /
    • pp.891-905
    • /
    • 2005
  • The present study was performed to evaluate the effect of tetracycline-HCL on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface. HA-coated surface and TiUniteTM surface were utilized. Implant surface was rubbed with 50mg/ml tetracycline-HCL solution for $\frac{1}{2}min.$, 1min., $1\frac{1}{2}min.$, 2min., and $2\frac{1}{2}min.$ respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In HA-coated surfaces, round particles were deposited irregularly. The roughness of surfaces conditioned with tetracycline-HCL was lessened and the cracks were increased relative to the application time. 3. The anodic oxidized surfaces showed the craterous structures. The surface conditioning with tetracycline-HCl didn't influence on its micro-morphology. In conclusion, the detoxification with 50mg/ml tetracycline-HCL must be applied respectively with different time according to various implant surfaces.

Highly-closed/-Open Porous Ceramics with Micro-Beads by Direct Foaming

  • Jang, Woo Young;Seo, Dong Nam;Park, Jung Gyu;Kim, Hyung Tae;Lee, Sung Min;Kim, Suk Young;Kim, Ik Jin
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.604-609
    • /
    • 2016
  • This study reports on wet-foam stability with respect to porous ceramics from a particle-stabilized colloidal suspension that is achieved through the addition of polymethyl methacrylate (PMMA) using a wet process. To stabilize the wet foam, an initial colloidal suspension of $Al_2O_3$ was partially hydrophobized by the surfactant propyl gallate (2 wt.%) and $SiO_2$ was added as a stabilizer. The influence of the PMMA content on the bubble size, pore size, and pore distribution in terms of the contact angle, surface tension, adsorption free energy, and Laplace pressure are described in this paper. The results show a wet-foam stability of more than 83%, which corresponds to a particle free energy of $2.7{\times}10^{-12}J$ and a pressure difference of 61.1 mPa for colloidal particles with 20 wt.% of PMMA beads. It was possible to control the uniform distribution of the open/closed pores by increasing the PMMA content and by adding thick struts, leading to the achievement of a higher-stability wet foam for use in porous ceramics.

에어로졸 증착 공정으로 제조된 ZnO, AZO, ITO 박막의 특성과 유연 내구성 (Flexible Durability and Characteristics of ZnO, AZO and ITO Thin Films Grown by Aerosol Deposition Process)

  • 이동원;조명연;이상헌;김용남;이대석;구상모;오종민
    • 전기전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.404-407
    • /
    • 2017
  • 에어로졸 증착 공정을 이용하여 ZnO, AZO 및 ITO 막을 증착하고 코팅막의 미세구조, 광학적 및 전기적 특성을 연구하였다. 상온에서 PET 기판 위에 약 400 nm의 두께를 가지는 ZnO, AZO 및 ITO 막을 성공적으로 제조할 수 있었으며 캐리어 가스 유량이 증가하면서 ZnO, AZO 및 ITO 막의 광학적 특성 및 전기적 특성이 향상되었다. 기계적인 유연 내구성 시험에 있어 ZnO 막은 5,000회의 굽힘에도 파괴가 발생하지 않은 반면 AZO 및 ITO 막은 5000회 굽힘 시험 후 막의 파괴가 발생하고 투과도 및 저항의 성능이 저하되었다. 결론적으로 AZO 및 ITO 막의 성능은 ZnO 막에 비하여 약간 열세이나, 입자크기 제어 및 공정 최적화를 통해 성능을 향상시킬 수 있을 것으로 판단된다.

Y2O3 함량과 소결조건에 따른 상압소결 AlN 세라믹스의 열전도도 고찰 (Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of Y2O3 Content and Sintering Condition)

  • 나상문;고신일;이상진
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.368-372
    • /
    • 2011
  • Aluminum nitride (AlN) has excellent thermal conductivity, whereas it has some disadvantage such as low sinterability. In this study, the effects of sintering additive content and sintering condition on thermal conductivity of pressureless sintered AlN ceramics were examined on the variables of 1~3 wt% sintering additive ($Y_2O_3$) content at $1900^{\circ}C$ in $N_2$ atmosphere with holding time of 2~10 h. All AlN specimens showed higher thermal conductivity as the $Y_2O_3$ content and holding time increase. The formation of secondary phases (yttrium aluminates) by reaction of $Y_2O_3$ and $Al_2O_3$ from AlN surface promoted the thermal conductivity of AlN specimens, because the secondary phases could reduce the oxygen contents in AlN lattice. Also, thermal conductivity was increased by long sintering time because of the uniform distribution and the elimination of the secondary phases at the grain boundary by the evaporation effect during long holding time. A carbothermal reduction reaction was also affected on the thermal conductivity. The thermal conductivity of AlN specimens sintered at $1900^{\circ}C$ for 10 h showed 130~200W/mK according to the content of sintering additive.

천이금속에 따른 SiC계 복합체의 전기적 특성 (Electrical Properties of SiC Composites by Transition Metal)

  • 신용덕;서재호;주진영;고태헌;김영백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1303-1304
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%]SiC-39[vol.%]$TiB_2$ and using 61[vol.%]SiC-39[vol.%]$ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_{2}O_{3}+Y_{2}O_{3}$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was occurred on the SiC-$TiB_2$ and SiC-$ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 226.06[Mpa] and 86.38[Gpa] in SiC-$ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SiC-$ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the SiC-$TiB_2$ and SiC-$ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the value of $6.88{\times}10^{-3}/[^{\circ}C]$ and $3.57{\times}10^{-3}/[^{\circ}C]$ for SiC-$ZrB_2$ and SiC-$TiB_2$ composite in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$.

  • PDF

Goethite의 합성 및 형상제어 (Synthesis and Shape Control of Goethite Nano Particles)

  • 최현빈;전명표;전승엽;황진아
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.552-558
    • /
    • 2016
  • Goethite, ${\alpha}$-FeOOH have various applications such as absorbent, pigment and source for magnetic materials. Goethite particles were synthesized in a two step process, where $Fe(OH)_2$ were synthesized in nitrogen atmosphere using $FeSO_4$ as a raw material in the first process, and after that acicular goethite particles were obtained in an air oxidation process of $Fe(OH)_2$ in highly alkaline aqueous solution. Their phase and microstructure were investigated with XRD and FE-SEM. It was found that the morphology of goethite and the ratio of length-to-width (aspect ratio) of acicular goethite are dependent on the some factors such as R value ($OH^-/Fe^{2+}$), air flow rate and pH conditions. In particular, R value has the strongest influence on the synthesized goethite morphology. It is considered that the optimal value R is 4.5 because X-ray diffraction peaks of goethite have the highest intensity at that value. Morphology of goethite particles was controlled by air flow rates, showing that their size and aspect ratio are getting smaller and decrease, respectively as air flow rate increases. The largest goethite particle obtained is about 1,500 nm in length and 150 nm in diameter.

Evaluation of Osseointegration around Tibial Implants in Rats by Ibandronate-Treated Nanotubular Ti-32Nb-5Zr Alloy

  • Nepal, Manoj;Li, Liang;Bae, Tae Sung;Kim, Byung Il;Soh, Yunjo
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.563-569
    • /
    • 2014
  • Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy (untreated) as the control group and titanium alloy group coated with ibandronate as the experimental group. Then, the implants were inserted in both tibiae of the rats for four weeks. After implantation, bone implant interface, trabecular microstructure, mechanical fixation was evaluated by histology, micro-computed tomography (${\mu}CT$) and the push-out test, respectively. We found that the anodized, heat-treated and ibandronate-coated titanium alloy triggered pronounced bone implant integration and early bone formation. Ibandronate-coated implants showed elevated values for removal torque and a higher level of BV/TV, trabecular thickness and separation upon analysis with ${\mu}CT$ and mechanical testing. Similarly, higher bone contact and a larger percentage bone area were observed via histology compared to untreated alloy. Furthermore, well coating of ibandronate with alloy was observed by vitro releasing experiment. Our study provided evidences that the coating of bisphosphonate onto the anodized and heat-treated nanostructure of titanium alloy had a positive effect on implant fixation.