• Title/Summary/Keyword: microstructure control

Search Result 502, Processing Time 0.036 seconds

A study on the improvement of thickness accuracy in a plate mill

  • Lee, Duk-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.723-727
    • /
    • 2003
  • In this paper, two methods are discussed for good rolling force prediction in a plate mill. One is about the development of a long and a short learning scheme using a Neural Network for normal rolling and the other is about a mathematical model improvement by considering microstructural changes for controlled rolling. The research results are implemented in a on-line system of Pohang Works in POSCO and the field tests have showed that the prediction accuracies of rolling force are highly improved.

  • PDF

Control of Electromagnetic Properties of High Initial Permeability Mn-Zn Ferrite with the Microstructure Control (미세구조 조절에 의한 고투자율 Mn-Zn Ferrite의 특성제어)

  • 도세욱;류지태;김정희;강태현;허원도
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.50-54
    • /
    • 1998
  • In order to obtain desired electromagnetic propertieι high initial permeability and good frequency dependance of initial p permeability, the adding effects of sevral seeds were experimented in Mn-Zn ferrite system. As adding seed grams, calcined at sintering temperature, abnormal grains were disappeared clearly but the density and the initial permcability of sintered Mn-Zn ferrite body were decreased. On the contrary, in case of adding seed rains which were calcined below the calcination temperatnre of matrix particle, abnormal grains remained but the initial permeability was increas$\xi$d with proper s$\xi$ed content. W With proper seed content, the initial permeability was increased by 10-20% but tbe $\alpha$ltoff frequency was not changed.

  • PDF

Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review

  • Slobodyan, Mikhail
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1049-1078
    • /
    • 2021
  • The review summarizes the published data on the widely applied electron-beam, laser-beam, as well as resistance upset, projection, and spot welding of zirconium alloys for nuclear applications. It provides the results of their analysis to identify common patterns in this area. Great attention has been paid to the quality requirements, the edge preparation, up-to-date equipment, process parameters, as well as post-weld treatment and processing. Also, quality control and weld repair methods have been mentioned. Finally, conclusions have been drawn about a significant gap between the capabilities of advanced welding equipment to control the microstructure and, accordingly, the properties of welded joints of the zirconium alloys and existing algorithms that enable to realize them in the nuclear industry. Considering the ever-increasing demands on the high-burnup accident tolerant nuclear fuel assemblies, great efforts should be focused on the improving the welding procedures by implementing predefined heat input cycles. However, a lot of research is required, since the number of possible combinations of the zirconium alloys, designs and dimensions of the joints dramatically exceeds the quantity of published results on the effect of the welding parameters on the properties of the welds.

Effects of B and Cu Additions on the Microstructure and Mechanical Properties of High-Strength Bainitic Steels (베이나이트계 고강도강의 미세조직과 기계적 특성에 미치는 B 및 Cu 첨가의 영향)

  • Yim, H.S.;Lee, S.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.2
    • /
    • pp.75-81
    • /
    • 2015
  • Effects of B and Cu additions on the microstructure and mechanical properties of high-strength bainitic steels were investigated in this study. Six kinds of high-strength bainitic steels with different B and Cu contents were fabricated by thermo-mechanical control process composed of controlled rolling and accelerated cooling. The microstructures of the steels were analyzed using optical and transmission microscopy, and the tensile and impact tests were conducted on them in order to investigate the correlation of microstructure with mechanical properties. Depending on the addition of B and Cu, various low-temperature transformation products such as GB (granular bainite), DUB (degenerated upper bainite), LB (lower bainite), and LM (lath martensite) were formed in the steels. The addition of B and Cu increased the yield and tensile strengths because of improved hardenability and solid solution strengthening, but decreased the ductility and low-temperature toughness. The steels containing both B and Cu had a very high strength above 1.0 GPa, but showed a worse low-temperature toughness of higher DBTT (ductile-to-brittle transition temperature) and lower absorbed energy. On the other hand, the steels having GB and DUB showed a good combination of tensile and impact properties in terms of strength, ductility, yield ratio, absorbed energy, and DBTT.

A Study on Microstructural Evolution of Hot Rolled AZ31 Magnesium Alloy Sheets (열간 압연한 AZ31 마그네슘합금 판재의 미세조직 발달에 관한 연구)

  • Kim S. H.;Yim C. D.;You B. S.;Seo Y. M.;Chung I. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.63-71
    • /
    • 2004
  • Recently, a sheet forming process of Mg alloys is highlighted again due to increasing demand for Mg wrought alloys in the applications of casings of mobile electronics and outer-skins of light-weight transportation. Microstructure control is essential for the enhancement of workability and formability of Mg alloy sheets. In this research, AZ31 Mg alloy sheets were prepared by hot rolling process and the rolling condition dependency of the microstructure and texture evolution was studied by employing a conventional rolling mill as well as an asymmetric rolling mill. When rolled through multiple passes with a small reduction per pass, fine-grained and homogeneous microstructure evolved by repetitive dynamic and static recrystallization. With higher rolling temperature, dynamic recrystallization was initiated in lower reduction. However with increasing reduction per pass, deformation was locallized in band-like regions, which provided favorable nucleation sites f3r dynamic recrystallization. Through post annealing process, the microstructures could be transformed to more equiaxed and homogeneous grain structures. Textures of the rolled sheets were characterized by $\{0002\}$ basal plane textures and retained even after post annealing. On the other hand, asymmetrically rolled and subsequently annealed sheets exhibited unique annealing texture, where $\{0002\}$ orientation was rotated to some extent to the rolling direction and its intensity was reduced.

  • PDF

Properties of Sputter Deposited Cr Thin Film on Polymer Substrate by Glancing Angle Deposition (폴리머 기판에 스퍼터법으로 경사 증착한 Cr박막의 특성)

  • Bae, Kwang-Jin;Choi, In-Kyun;Jeong, Eun-Wook;Kim, Dong-Yong;Lee, Tae-Yong;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.54-59
    • /
    • 2015
  • Glancing angle deposition (GLAD) is a powerful technique to control the morphology and microstructure of thin film prepared by physical vapor deposition. Chromium (Cr) thin films were deposited on a polymer substrate by a sputtering technique using GLAD. The change in thickness and Vickers microhardness for the samples was observed with a change in the glancing angle. The adhesion properties of the critical load (Lc) by a scratch tester for the samples were also measured with varying the glancing angle. The critical load, thickness and Vickers microhardness for the samples decreased with an increase in the glancing angle. However, the thickness of the Cr thin film prepared at a $90^{\circ}$ glancing angle showed a relatively large value of 50 % compared to that of the sample prepared at $0^{\circ}$. The results of X-ray diffraction and scanning electron microscopy demonstrated that the effect of GLAD on the microstructure of samples prepared by sputter technique was not as remarkable as the samples prepared by evaporation technique. The relatively small change in thickness and microstructure of the Cr thin film is due to the superior step-coverage properties of the sputter technique.