• Title/Summary/Keyword: microstructure characterization

Search Result 364, Processing Time 0.024 seconds

Processing optimization of Ga-doped ZnO for transparent electrode application using DOE (실험계획법을 이용한 GZO 투명전극 성장의 공정 최적화)

  • Lee, Sang-Gyu;Chang, Seong-Pil;Son, Chang-Wan;Leem, Jae-Hyeon;Song, Yong-Won;Lee, Sang-Yeol;Han, Seung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.108-109
    • /
    • 2007
  • Microstructure and electrical properties of Ga-doped ZnO (GZO) films grown on $Al_2O_3$ templates by Pulsed Laser Deposition (PLD) are investigated utilizing X-ray diffraction method and Hall measurement, respectively. In order to determine the optimized operating condition of the PLD, statistical design of experiment (DOE) is employed. It provides the systematic and efficient methodology for characterization and modeling of PLD processing with a relatively small number of experiments. The most optimized recipe of the process factors is obtained by response optimizer in Minitab.

  • PDF

Fabrecation and Characterization of $SrBi_2TaNbO_9$ Ferroelectric Thin Film Prepared by Sol-Gel Method (SOL-GEL법을 이용한 $SrBi_2TaNbO_9$ 강유전성 박막 제조 및 특성 평가)

  • 이진한;박상준;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.94-98
    • /
    • 2000
  • Polycrystalline SBTN ferroelectric thin films were prepared by sol-gel method with various Nb mole ratios on Pt/ $SiO_2$/Si (100) substrates. The films were annealed at different temperatures and characterized in terms of phase and microstructure. Relatively a well saturated hysteresis pattern was obtained at x =0.2 in S $r_{0.8}$B $i_{2.3}$(T $a_{1-x}$ N $b_{x}$)$_2$ $O_{9+}$$\alpha$/ thin films. At an applied voltage of 5V, the dielectric constant ($\varepsilon$$_{r}$) and dissipation factor (tan $\delta$) of typical S $r_{0.8}$B $i_{2.3}$(T $a_{1-x}$ N $b_{x}$)$_2$ $O_{9+}$$\alpha$/ thin film (x=0.2) were about 236.2 and 0.034. Measured remanent polarization (2Pr) and coercive field (Ec) were 4.28C/c $m_2$, and 38.88kv/cm respectively. No fatigue was observed up to 6$\times$10$_{10}$ switching cycles at 5V and the normalized polarization reduced by a factor of only 4%.%. 4%.%. 4%.%.%.%.%.

  • PDF

Micro-pinholes in Composite Cobalt Nickel Silicides (코발트 니켈 합금 구조에서 생성된 실리사이드의 마이크로 핀홀의 발생)

  • Song, Oh-Sung;Kim, Sang-Yeob;Jeon, Jang-Bae;Kim, M.J.
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.656-662
    • /
    • 2006
  • We fabricated thermal evaporated 10 nm-$Ni_xCo_{1-x}$ (x=0.2, 0.5 and 0.8) /(poly)Si films to form nanothick cobalt nickel composite silicides by a rapid thermal annealing at $700{\sim}1100^{\circ}C$ for 40 seconds. A field emission scanning electron microscope and a micro-Raman spectrometer were employed for microstructure and silicon residual stress characterization, respectively. We observed self-aligned micro-pinholes on single crystal silicon substrates silicidized at $1100^{\circ}C$. Raman silicon peak shift indicates that the residual tensile strain of $10^{-3}$ in single crystal silicon substrates existed after the silicide process. We propose thermal stress from silicide exothermic reaction and high temperature silicidation annealing may cause the pinholes. Those pinholes are expected to be avoided by lowering the silicidation temperature. Our results imply that we may use our newly proposed composite silicides to induce the appropriate strained layer in silicion substrates.

Preparation and Characterization of Sulfated TiO2/zeolite Composite Catalysts with Enhanced Photocatalytic Activity

  • Zhao, Yuan;Li, JingXiu;Wang, Ling;Hao, Yanan;Yang, Lin;He, Pingting;Xue, JianJun
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850117.1-1850117.11
    • /
    • 2018
  • Sulfated $TiO_2$ nanoparticles were successfully immobilized on zeolite through improving hydrolysis-deposition method. Microstructure, crystallization, surface state and surface area of composite catalysts were characterized by SEM, XRD, FTIR spectra, XPS and BET and the photocatalytic activity was evaluated by degradation of methyl orange under UV irradiation. We optimized these factors ($SO^{2-}_4$ ions, calcination temperature and loading amount of sulfated $TiO_2$) on photocatalytic activity and crystallization of composite photocatalysts. The results indicated that the $SO^{2-}_4$ ions are successfully immobilized on the surface of $TiO_2$, and sulfated $TiO_2$/zeolite show the highest photocatalytic activity for methyl orange at the $[SO^{2-}_4 ]/[Ti^{4+}]$ molar rate of 1:1, calcination temperature of $600^{\circ}C$ for 2 h, and sulfated $TiO_2$ loading amount of 40%, respectively.

Synthesis and Characterization of Anatase TiO2 Powder using a Homogeneous Precipitation Method (균일침전법을 이용한 아나타제형 TiO2 분말의 제조 및 특성 평가)

  • Choi, Soon Ok;Cho, Jee Hee;Lim, Sung Hwan;Chung, Eun Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.367-373
    • /
    • 2011
  • This paper studies the experimental method that uses the homogeneous precipitation method to prepare mica flakes coated with anatase-type titania pearlescent pigment with urea as precipitant. The optimum technology parameters, the chemical composition, the microstructure, and the color property of resulting pigments are discussed. The coating principle of mica coated titania with various coating thickness is analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and tested by spectrophotometer analysis. The colored nanocrystalline pigments with different morphology and coating thickness 45-170 nm were prepared by homogeneous precipitation treatment of $TiOSO_4$(titanum oxysulfate) aqueous solutions. Characterizations on the pigments show that the pearlescent effects of the pigments depend mainly on mica size, thickness of the metal oxide deposit, its chemical composition, and crystal structure.

Zr-7Cu Alloy Design According to Sn Content for Bio-Metallic Materials (금속 생체재료를 위한 Sn 함량에 따른 Zr-7Cu 합금설계)

  • Kim, Min-Suk;Kim, Chung-Seok
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.690-696
    • /
    • 2021
  • The purpose of this study is to develop a zirconium-based alloy with low modulus and magnetic susceptibility to prevent the stress-shielding effect and the generation of artifacts. Zr-7Cu-xSn (x = 1, 5, 10, 15 mass%) alloys are prepared by an arc melting process. Microstructure characterization is performed by microscopy and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness and compression test. The magnetic susceptibility is evaluated using a SQUID-VSM. The average magnetic susceptibility value of the Zr-7Cu-xSn alloy is 1.176 × 10-8 cm3g-1. Corrosion tests of zirconium-based alloys are conducted through polarization test. The average Icorr value of the Zr-7Cu-xSn alloy is 0.1912 ㎂/cm2. The elastic modulus value of 14 ~ 18 GPa of the zirconium-based alloy is very similar to the elastic modulus value of 15 ~ 30 GPa of the human bone. Consequently, the Sn added zirconium alloy, Zr-7Cu-xSn, is very interesting and attractive as a biomaterial that reduces the stress-shielding effect caused by differences of elastic modulus between human bone and metallic implants. In addition, this material has the potential to be used in metallic dental implants to effectively eliminate artifacts in MRI images due to low magnetic susceptibility.

Enhanced mechanical properties and interface structure characterization of W-La2O3 alloy designed by an innovative combustion-based approach

  • Chen, Pengqi;Xu, Xian;Wei, Bangzheng;Chen, Jiayu;Qin, Yongqiang;Cheng, Jigui
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1593-1601
    • /
    • 2021
  • Oxide dispersion strengthening (ODS) tungsten alloys are highly desirable in irradiation applications. However, how to improve the properties of ODS-tungsten alloys efficiently has been worth studying for a long time. Here we report a nanostructuring approach that achieves W-La2O3 alloy with a high level of flexural strength and Vickers hardness at room temperature, which have the maximum value of 581 MPa and 703 Hv, respectively. This method named solution combustion synthesis (SCS) can generate 30 nm coating structures W-La2O3 composite powders by using Keggin-type structural polyoxometalates as raw materials in a fast and low-cost process. The composite powder can be fabricated to W-La2O3 alloy with an optimal microstructure of submicrometric W grains coexisting with nanometric oxide particles in the grain interior, and a stability interface structure of grain boundaries (GBs) by forming transition zones. The method can be used to prepare new ODS alloys with excellent properties in the future.

Development and characterization of an eco-friendly packaging film using Gelidium amansii and Sargassum horneri (우뭇가사리와 괭생이모자반을 이용한 친환경 포장 필름 개발 및 특성 연구)

  • Wan young, Cha;Chan, Byon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.76-85
    • /
    • 2022
  • In this study, a biodegradable packaging film was developed using two marine algae, Gelidium amansii, and Sargassum horneri. The chemical properties and microstructure of the developed film were evaluated using field emission scanning electron microscope, Fourier transform infrared spectroscopy, gas chromatography-Mass spectroscopy, and thermogravimetric analysis. Furthermore, the mechanical properties and toxicity of the film were evaluated using the ISO 1924 and IEC 62321 methods, respectively. The biodegradability of the film was evaluated according to ISO 14855-1:2012 method. The film was primarily made of cellulose and had biodegradability that was about 17 times greater than that of PBS, a representative eco-friendly plastic. Moreover, the mechanical properties improved by approximately 40% compared to the seaweed-based film of the previous study. The virulence test revealed that the content of all of the toxic substances listed in IEC62321 was below the measurement limit. An egg carton that can be used in practice was manufactured in accordance with ISO 534, and its applicability was tested using the biodegradable packaging film prepared.

The influence of L-arginine as an additive on the compressive strength and hydration reaction of Portland cement

  • Yildiz, Mine Kurtay;Gerengi, Husnu;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • The concrete quality relies on general factors like preparation technique, uniformity of the compaction, amount and appropriateness of the additives. The current article investigates the impact of a well knows amino acid, L-arginine as an additive on water requirements, setting durations and characterization of various cement samples. Compressive strength tests of reference and L-arginine added cements at age of 2, 7 and 28 days were carried out according to TS-EN 196-1. Samples were blended by incorporating various amounts of L-arginine (25 ppm, 50 ppm and 75 ppm) in the cement water mixture which were tested with Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TG), scanning electron microscopy (SEM) and the energy-dispersive X-ray spectroscopy (EDS) on the 28th day. Results revealed that L-arginine does not affect the setting time, volume expansion of cement and water demands negatively; rather it imparts enhanced sustainability to the samples. It was determined that the highest value belonged to the 75L mortar with an increase of 2.6% compared to the reference sample when the compressive strengths of all mortars were compared on the 28th day. Besides, it has been observed that the development of calcium silicate hydrate or C-S-H gel, calcium hydroxide or CH and other hydrated products are associated with each other. L-arginine definitely has a contribution in the consumption of CH formed in the hydration process.

Selective Laser Sintering of Co-Cr Alloy Powders and Sintered Products Properties

  • Dong-Wan Lee;Minh-Thuyet Nguyen;Jin-Chun Kim
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.7-12
    • /
    • 2023
  • Metal-additive manufacturing techniques, such as selective laser sintering (SLS), are increasingly utilized for new biomaterials, such as cobalt-chrome (Co-Cr). In this study, Co-Cr gas-atomized powders are used as charge materials for the SLS process. The aim is to understand the consolidation of Co-Cr alloy powder and characterization of samples sintered using SLS under various conditions. The results clearly suggest that besides the matrix phase, the second phase, which is attributed to pores and oxidation particles, is observed in the sintered specimens. The as-built samples exhibit completely different microstructural features compared with the casting or wrought products reported in the literature. The microstructure reveals melt pools, which represent the characteristics of the scanning direction, in particular, or of the SLS conditions, in general. It also exposes extremely fine grain sizes inside the melt pools, resulting in an enhancement in the hardness of the as-built products. Thus, the hardness values of the samples prepared by SLS under all parameter conditions used in this study are evidently higher than those of the casting products.