DOI QR코드

DOI QR Code

Preparation and Characterization of Sulfated TiO2/zeolite Composite Catalysts with Enhanced Photocatalytic Activity

  • Zhao, Yuan (College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Li, JingXiu (College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Wang, Ling (College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Hao, Yanan (College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Yang, Lin (College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • He, Pingting (College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Xue, JianJun (College of Material Science and Technology Nanjing University of Aeronautics and Astronautics)
  • Received : 2018.04.19
  • Accepted : 2018.09.06
  • Published : 2018.10.31

Abstract

Sulfated $TiO_2$ nanoparticles were successfully immobilized on zeolite through improving hydrolysis-deposition method. Microstructure, crystallization, surface state and surface area of composite catalysts were characterized by SEM, XRD, FTIR spectra, XPS and BET and the photocatalytic activity was evaluated by degradation of methyl orange under UV irradiation. We optimized these factors ($SO^{2-}_4$ ions, calcination temperature and loading amount of sulfated $TiO_2$) on photocatalytic activity and crystallization of composite photocatalysts. The results indicated that the $SO^{2-}_4$ ions are successfully immobilized on the surface of $TiO_2$, and sulfated $TiO_2$/zeolite show the highest photocatalytic activity for methyl orange at the $[SO^{2-}_4 ]/[Ti^{4+}]$ molar rate of 1:1, calcination temperature of $600^{\circ}C$ for 2 h, and sulfated $TiO_2$ loading amount of 40%, respectively.

Keywords

Acknowledgement

Supported by : Central Universities

References

  1. X. Zhou, C. Lai, D. Huang, G. Zeng, L. Chen, L. Qin, P. Xu, M. Cheng, C. Huang, C. Zhang and C. Zhou, J. Hazard Mater. 346, 113 (2018). https://doi.org/10.1016/j.jhazmat.2017.12.032
  2. W. Zhang, L. Wang, H. Shen and Y. Wang, React. Kinet. Mech. Cat. 116, 577 (2015). https://doi.org/10.1007/s11144-015-0899-z
  3. A. Ibhadon and P. Fitzpatrick, Netw. Heterog. Media 3, 189 (2013).
  4. J. Fernandez-Catala, L. Cano-Casanova, M. A. Lillo-Rodenas, A. Berenguer-Murcia and D. Cazorla-Amoros, Molecules 22, 1 (2017).
  5. A. Baysal, H. Saygin and G. S. Ustabasi, Environ. Monit. Assess. 190, 34 (2017).
  6. X. Zhang, G. Xiao, Y. Wang, Y. Zhao, H. Su and T. Tan, Carbohydr. Polym. 169, 101 (2017). https://doi.org/10.1016/j.carbpol.2017.03.073
  7. J. Huang, X. Zhang, C. Liang and J. Hu, J. Hazard Mater. 348, 67 (2018). https://doi.org/10.1016/j.jhazmat.2018.01.035
  8. J. Sun, N. Liu, S. Zhai, Z. Xiao, Q. An and D. Huang, Mater. Sci. Semicon. Proc. 25, 286 (2014). https://doi.org/10.1016/j.mssp.2014.01.003
  9. Y. T. Liao, Y. Y. Huang, H. M. Chen, K. Komaguchi, C. H. Hou, J. Henzie, Y. Yamauchi, Y. Ide and K. C. Wu, ACS Appl. Mater. Interfaces 9, 42425 (2017). https://doi.org/10.1021/acsami.7b13912
  10. N. Lu, Y. Wang, S. Ning, W. Zhao, M. Qian, Y. Ma, J. Wang, L. Fan, J. Guan and X. Yuan, Sci. Rep. 7, 17298 (2017). https://doi.org/10.1038/s41598-017-17221-4
  11. S. Santhisudha, S. H. Jayaprakash, G. Mohan, Y. N. Kumar, V. Suganthi, V. Mohanasrinivasan and C. S. Reddy, Comb. Chem. High T. Scr. 19, 290 (2016).
  12. S. Yaparatne, C. P. Tripp and A. Amirbahman, J. Hazard Mater. 346, 208 (2018). https://doi.org/10.1016/j.jhazmat.2017.12.029
  13. W. Wei and S. Wu, Bioresour. Technol. 241, 760 (2017). https://doi.org/10.1016/j.biortech.2017.06.004
  14. J. Zhang, X. Wang, J. Wang, J. Wang and Z. Ji, Chem. Phys. Lett. 643, 53 (2016). https://doi.org/10.1016/j.cplett.2015.11.020
  15. Z. Ghasemi, H. Younesi and A. A. Zinatizadeh, Chemosphere 159, 552 (2016). https://doi.org/10.1016/j.chemosphere.2016.06.058
  16. B. Neppolian, S. Mine, Y. Horiuchi, C. L. Bianchi, M. Matsuoka, D. D. Dionysiou and M. Anpo, Chemosphere 153, 237 (2016). https://doi.org/10.1016/j.chemosphere.2016.03.063
  17. M. Lafjah, F. Djafri, A. Bengueddach, N. Keller and V. Keller, J. Hazard Mater. 186, 1218 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.134
  18. Q. Shen, W. Zhang, Z. Hao and L. Zou, Chem. Eng. J. 165, 301 (2010). https://doi.org/10.1016/j.cej.2010.08.057
  19. C. Wang, H. Shi and Y. Li, Appl. Surf. Sci. 257, 6873 (2011). https://doi.org/10.1016/j.apsusc.2011.03.021
  20. C. Wang, H. Shi and Y. Li, Appl. Surf. Sci. 258, 4328 (2012). https://doi.org/10.1016/j.apsusc.2011.12.108
  21. Z. Sun, Z. Hu, Y. Yan and S. Zheng, Appl. Surf. Sci. 314, 251 (2014). https://doi.org/10.1016/j.apsusc.2014.06.171
  22. H. Li, G. Li, J. Zhu and Y. Wan, J. Mol. Catal. A-Chem. 226, 93 (2005). https://doi.org/10.1016/j.molcata.2004.09.028
  23. L. Gao and Q. Zhang, Mater. Trans. 42, 1676 (2001). https://doi.org/10.2320/matertrans.42.1676
  24. O. Miroshnichenko, S. Posysaev and M. Alatalo, Phys. Chem. Chem. Phys. 18, 33068 (2016). https://doi.org/10.1039/C6CP05681D
  25. H. He, Y. Cheng, C. Yang, G. Zeng, C. Zhu and Z. Yan, J. Environ. Sci. 54, 135 (2017). https://doi.org/10.1016/j.jes.2016.06.009
  26. M. A. Lopez Zavala, S. A. Lozano Morales and M. Avila-Santos, Heliyon 3, e00456 (2017). https://doi.org/10.1016/j.heliyon.2017.e00456
  27. C. Zhan, F. Chen, H. Dai, J. Yang and M. Zhong, Chem. Eng. J. 225, 695 (2013). https://doi.org/10.1016/j.cej.2013.03.110
  28. M. R. Eskandarian, M. Fazli, M. Rasoulifard and H. Choi, Appl. Catal. B Environ. 183, 407 (2016). https://doi.org/10.1016/j.apcatb.2015.11.004
  29. F. Jiang, Z. Zheng, Z. Xu, S. Zheng, Z. Guo and L. Chen, J. Hazard Mater. 134, 94 (2006). https://doi.org/10.1016/j.jhazmat.2005.10.041
  30. Z. Liu, Z. Liu, T. Cui, L. Dong, J. Zhang, L. Han, G. Li and C. Liu, Mater. Express 4, 465 (2014). https://doi.org/10.1166/mex.2014.1196
  31. C. Zhan, F. Chen, J. Yang, D. Dai, X. Cao and M. Zhong, J. Hazard Mater. 267, 88 (2014). https://doi.org/10.1016/j.jhazmat.2013.12.038
  32. X. Wang, J. C. Yu, P. Liu, X. Wang, W. Su and X. Fu, J. Photochem. Photobiol. A 179, 339 (2006). https://doi.org/10.1016/j.jphotochem.2005.09.007
  33. L. Laysandra, M. Sari, F. E. Soetaredjo, K. Foe, J. N. Putro, A. Kurniawan, Y. H. Ju and S. Ismadji, Heliyon 3, e00488 (2017). https://doi.org/10.1016/j.heliyon.2017.e00488
  34. G. Colon, M. C. Hidalgo, G. Munuera, I. Ferino, M. G. Cutrufello, J. A. Navio, Appl. Catal. B Environ. 63, 45 (2006). https://doi.org/10.1016/j.apcatb.2005.09.008
  35. A. A. Dabbawala, S. M. Alhassan, D. K. Mishra, J. Jegal and J.-S. Hwang, Mol. Catal. 454, 77 (2018). https://doi.org/10.1016/j.mcat.2018.05.009
  36. Z. Li, R. Wnetrzak, W. Kwapinski and J. J. Leahy, ACS Appl. Mater Interfaces 4, 4499 (2012). https://doi.org/10.1021/am300510u
  37. C. Liu, R. Zhang, S. Wei, J. Wang, Y. Liu, M. Li and R. Liu, Fuel 157, 183 (2015). https://doi.org/10.1016/j.fuel.2015.05.003
  38. L. Wenhua, L. Hong, C. Sao'an, Z. Jianqing and C. Chunan, J. Photochem. Photobiol. A 131, 125 (2000). https://doi.org/10.1016/S1010-6030(99)00232-4
  39. C. P. Sibu, S. R. Kumar, P. Mukundan and K. G. K. Warrier, Chem. Mater. 14, 2876 (2002). https://doi.org/10.1021/cm010966p