• Title/Summary/Keyword: microstructure and surface effects

Search Result 312, Processing Time 0.031 seconds

A Study on the Physical Property of Epoxy Resin Due to After-Curing Condition (후경화 조건에 따른 에폭시 수지의 물성에 관한 연구)

  • Han, Jeong-Young;Kim, Myung-Hun;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.976-981
    • /
    • 2012
  • In this study, hardness, microstructure and temperature of glass transition are measured respectively by using SEM (Scanning electron microscope) and DSC (Differential scanning calorimeter) to analyze the effects on material properties by after-curing in the epoxy resin. As the result of hardness test according to the after-curing conditions, the higher the temperature of after-curing, hardness and heat resistance are, the higher hardness is. As a result of microstructure for each specimen by SEM, it could be confirmed that the specimen with after-curing has more dense fracture surface. It is also found that temperatures of glass transitions by DSC are comparatively higher in the specimens with after-curing, and the differences between after-curing conditions are negligible.

The Effect of Cold Forging on Carburizing Microstructure

  • Yanjun Huo;Baixuan Liu;Qingpo Xi;Hua Liu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.40-42
    • /
    • 2003
  • The aim of this paper is to illustrate which factors influence the martensite grain fineness made by subsequently surface carburizing of extruded component. The effects of surface decarburizing by annealing, residual stress, initial microstructure and crystal oriental made by forward extrusion were taken into account. The available evidence suggests that the residual stress inside crystal or the crystal orientation is the main factor that results coarse martensite while cold extruded component was treated by carburizing.

  • PDF

Effects of AlN Ratio on Microstructure of AlN Films Grown by PAMBE (PAMBE를 이용하여 성장된 AlN 박막의 미세구조에 미치는 Al/N 비율 영향)

  • 홍성의;한기평;백문철;조경익;윤순길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.972-978
    • /
    • 2001
  • Some effects of Al/N ratio on microstructure of AlN films grown on Si(111) substrates by PAMBE were investigated. Al/N ratio was controlled by rf power of N$_2$ plasma source system. Al excess or N excess conditions were obtained below or above 350 W rf power, respectively. Surface roughness and morphology of AlN film grown at Al/N=1.0 showed the best result. Under Al excess condition, it was suggested that excess Al atoms which did not contribute to the growth of AlN film prevent the normal crystal growth and make abnormal growth of some columns. However, under N excess condition, it was explained that some of the excess active N source turned into gas state and then desorbed out from substrate.

  • PDF

Effects of Ni Concentration on Residual Stress in Electrodeposited Ni Thin Film for 63Ni Sealed Source (63Ni 밀봉선원용 Ni 전기도금 박막에서 Ni 농도가 잔류응력에 미치는 영향)

  • Yoon, Pilgeun;Park, Deok-Yong
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • Chloride plating solution was fabricated by dissolving metal Ni powders in a mixed solution with HCl and de-ionized water. Effects of $Ni^{2+}$ and saccharin concentrations in the plating baths on current efficiency, residual stress, surface morphology and microstructure of Ni films were studied. In the case of $0.2M\;Ni^{2+}$ concentration, current efficiency was decreased to about 65 % with increasing saccharin concentration, but, in the case of $0.7M\;Ni^{2+}$ concentration, it was shown more than 90 % with the increase of saccharin concentration. Residual stress of Ni thin film was appeared to be about 400 MPa up to 0.0244 M saccharin concentration at the $0.2M\;Ni^{2+}$ concentration and surface morphology with severe cracks was observed in the range of 0.0487~0.0975 M saccharin concentration. Residual stress of Ni thin films was measured to be about 750 MPa without saccharin addition and 114~148 MPa at the range of 0.0097~0.0975 M saccharin concentration for the $0.7M\;Ni^{2+}$ concentration. Relatively low residual stress values (114~148 MPa) of the Ni films at the range of 0.0097~0.0975 M saccharin concentration may be resulted from codeposition of S from saccharin. Ni films at $0.7M\;Ni^{2+}$ concentration showed smooth surface morphology and were independent of saccharin concentration. Ni films at $0.7M\;Ni^{2+}$ concentration consist of FCC(111), FCC(200), FCC(220) and FCC(311) peaks and the intensities of FCC(111) and FCC(200) peaks increased with increasing saccharin concentration. Also, the average grain size decreased with increasing saccharin concentration from about 30 nm to about 15 nm.

Effects of Surface Machining by a Lathe on Microstructure of Near Surface Layer and Corrosion Behavior of SA182 Grade 304 Stainless Steel in Simulated Primary Water

  • Zhang, Zhiming;Wang, Jianqiu;Han, En-hou;Ke, Wei
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • To find proper lathe machining parameters for SA182 Grade 304 stainless steel (SS), six kinds of samples with different machining surface states were prepared using a lathe. Surface morphologies and microstructures of near surface deformed layers on different samples were analysed. Surface morphologies and chemical composition of oxide films formed on different samples in simulated primary water with $100{\mu}g/L\;O_2$ at $310^{\circ}C$ were characterized. Results showed that surface roughness was mainly affected by lathe feed. Surface machining caused grain refinement at the top layer. A severely deformed layer with different thicknesses formed on all samples. In addition to high defect density caused by surface deformation, phase transformation, residual stress, and strain also affected the oxidation behaviour of SA182 Grade 304 SS in the test solution. Machining parameters used for # 4 (feed, 0.15 mm/r; back engagement, 2 mm; cutting speed, 114.86 m/min) and # 6 (feed,0.20 mm/r; back engagement, 1 mm; cutting speed, 73.01 m/min) samples were found to be proper for lathe machining of SA182 Grade 304 SS.

Effects of seed geometry on the crystal growth and the magnetic properties of single grain REBCO bulk superconductors

  • Lee, Hwi-Joo;Park, Soon-dong;Jun, Bung-Hyuck;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.33-39
    • /
    • 2017
  • This study presents that the orientation and the geometry of seed affect on the growth behavior of melt processed single grain REBCO bulk superconductor and its magnetic properties. The effects of seed geometry have been investigated for thin $30mm{\times}30mm$ rectangular powder compacts. Single grain REBCO bulk superconductors have been grown successfully by a top seed melt growth method for 8-mm thick vertical thin REBCO slab. Asymmetric structures have been developed at the front surface and at the rear surface of the specimen. Higher magnetic properties have been obtained for the specimen that c-axis is normal to the specimen surface. The relationships between microstructure, grain growth and magnetic properties have been discussed.

Study on the effect of vacuum fusion infiltration technology on the properties of tungsten/copper joining interface

  • Hao-Jie Zhang;Xue-qin Tian;Xiao-Yu Ding;Hui-Yun Zheng;Lai-Ma Luo;Yu-Cheng Wu;Jian-Hua Yao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2367-2374
    • /
    • 2024
  • In this paper, based on the need for high-strength connections between all-tungsten-oriented plasma materials and thermal sinking materials of copper and its alloys in nuclear fusion devices, a study on the effect of tungsten surface laser micro structuring on the interfacial bonding properties of W/Cu joints was carried out. In the experiment, the connectors were prepared by vacuum fusion infiltration technology, and the effects of microgroove structure on the mechanical and thermal conductivity of W/Cu connectors were investigated under different parameters (including microgroove pitch, microgroove depth, and microgroove taper). The maximum shear strength is 126.0 MPa when the pitch is 0.15 mm and the depth is 34 ㎛. In addition, the negative taper structure, i.e., the width of the entrance of the microstructure is smaller than the width of the interior of the microstructure, is also investigated. The shear tests show that there is an approximately linear relationship between the shear strength of W/Cu and taper. Compared with the positive taper, the shear strength of the samples with the same morphological density and depth of the tungsten surface is significantly higher.

Effects of UV and Ozone on the Weathershed for Polymer Insulators (폴리머애자 갓 재료에 미치는 자외선 및 오존의 영향)

  • 이병성;한재홍;한용희;한상옥;윤여숭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.63-66
    • /
    • 1999
  • The effects of UV and ozone on the weathershed materials for 5 polymer insulators were investigated. This study was carried by material characterizations such as surface microstructure, thermal property, chemical structure and contact angle. The aged specimens are compared with new ones. In case of UV, the chalking of fillers and cracking of surface were increased with the increase of UV radiation time. In case of ozone, aged specimens are not different from new ones. From this study, It can be concluded that UV has more effect on the surface properties of weathershed materials than ozone.

  • PDF

The Effect of Ion-Nitriding & Subsequent Reheating on Hardness and Microstructure of Hot work Tool Steel (STD 61) (열간공구강 STD61의 이온질화 특성과 재가열에 의한 경도와 조직의 변화)

  • Chun, H.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.130-138
    • /
    • 1996
  • It has been investigated that the ion nitriding effects of a STD61 steel in various time conditions of 3 to 9 hours, and the microstructure of compound and diffusion layers of the ion nitrided specimen for 6 hours and subsequently reheated for 1 hour at various temperatures of $400{\sim}800^{\circ}C$ As the nitriding time increased, the thickness of compound and diffusion layers was increased, but the hardness of surface was not considerably increased (Max Hv=1045 at 9hrs). Some of the nitrogen was denitrided out of the surfac and diffused into the core, and also the oxides ($Fe_3O_4$, $Fe_2O_3$) were formed on the surface of the specimen during reheating. The compound layer was partially decomposed at about $600^{\circ}C$ but the diffusion layer was increased up to $800^{\circ}C$. With increasing reheated temperture, the hardness of the surface was decreased, whereas the hardness depth of diffusion layer (0.25mm) was increased up to $600^{\circ}C$ more than that of ion nitrided (0.18mm). The blend-heat treated STD61 steel by ion nitriding is therefore expected to hold on the characteristics of ion nitriding up to $600^{\circ}C$.

  • PDF

Actual microstructure-based numerical method for mesomechanics of concrete

  • Chena, S.;Yueb, Z.Q.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • This paper presents an actual microstructure-based numerical method to investigate the mechanical properties of concrete at mesoscopic level. Digital image processing technique is used to capture the concrete surface image and generate the actual 3-phase microstructure of the concrete, which consists of aggregate, matrix and interfacial transition zones. The microstructure so generated is then transformed into a mesh or grid for numerical analysis. A finite difference code FLAC2D is used for the numerical analysis to simulate the mechanical responses and failure patterns of the concrete. Several cases of concrete with different degrees of material heterogeneity and under different compression loading conditions have been analysed. From the numerical results, the effects of the internal material heterogeneities as well as the external confining stresses are studied. It is shown that the material heterogeneities arising from the presence of different phases and the existence of interfacial transition zones have great influence on the overall mechanical behaviour of concrete and that the numerically simulated behaviour of concrete with or without confining stresses applied agrees quite well with the general observations reported in the literature.