• 제목/요약/키워드: microstructure, SEM-EDS

검색결과 196건 처리시간 0.027초

열처리조건에 따른 Cu-Ni-Si-Sn-Fe-P 석출경화형 동합금계의 물성변화 특성 (Mechanical and Physical Property Changes of Cu-Ni-Si-Sn-Fe-P Copper Alloy System According to the Heat Treatment Conditions)

  • 김승호;염영진
    • 열처리공학회지
    • /
    • 제26권5호
    • /
    • pp.225-232
    • /
    • 2013
  • The influence of aging treatment, addition elements and rolling reduction ratio on the microstructure, mechanical, electrical and bendability properties of Cu-Ni-Si-P-x (x = Fe, Sn, Zn) alloys for connector material application was investigated. SEM/EDS analysis exhibited that Ni2-Si precipitates with a size of 20~100 nm were distributed in grains. Fe, Sn, Zn elemnets in Cu-Ni-Si-P alloy imporved the mechanical strength but it was not favor in increasing of electrical conductivity. As higher final rolling reduction ratio, the strength and electrical conductivity is increased after aging treatment, but it indicated excellent bendability. Especially, Cu-2Ni-0.4Si-0.5Sn-0.1Fe-0.03P alloy show the tensile strength value of 700MPa and the electrical conductivity was observed to reach a maximum of 40%IACS. It is optimal for lead frame and connector.

Effect of nano-stabilizer on geotechnical properties of leached gypsiferous soil

  • Bahrami, Reza;Khayat, Navid;Nazarpour, Ahad
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.103-113
    • /
    • 2020
  • Gypsiferous soils classified as problematic soils due to the dissolution of gypsum. Presence of gypsum in the soils texture subjected to steady flow can cause serious damages for the buildings, roads and water transmission canals. Therefore, researchers have conducted a series of physical, mechanical and microstructural laboratory tests to study the effect of gypsum leaching on the geotechnical properties of a lean clay containing 0%, 3%, 6%, 9%, 12%, and 15% raw gypsum. In addition, a combination of two nano-chemical stabilizers named Terrasil and Zycobond was used in equal proportions to stabilize the gypsiferous clayey samples. The results indicated that gypsum leaching considerably changed the physical and mechanical properties of gypsiferous soils. Further, adding the combination of Terrasil and Zycobond nano-polymeric stabilizers to the gypsiferous soil led to a remarkable reduction in the settlement drop, compressibility, and electrical conductivity (EC) of the water passing through the specimens, resulting in improving the engineering properties of the soil samples. The X-ray diffraction patterns indicate that stabilization by terrasil and zycobond causes formation of new peaks such as CSH and alteration of pure soil structure by adding raw gypsum. Scanning electron microscope (SEM) images show the denser texture of the soil samples due to chemical stabilization and decrease of Si/Al ratio which indicates by Energy dispersive X-ray (EDS) interpretation, proved the enhance of shear strength in stabilized samples.

Electrochemical Behaviors of PEO-treated Ti-6Al-4V Alloy in Solution Containing Zn and Si Ions

  • Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.160-160
    • /
    • 2017
  • Commercially pure titanium (Cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Plasma electrolyte oxidation (PEO) enables control in the chemical composition, porous structure, and thickness of the TiO2 layer on Ti surface. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study on electrochemical behaviors of PEO-treated Ti-6Al-4V Alloy in solution containing Zn and Si ions. The morphology, the chemical composition, and the microstructure analysis of the sample were examined using FE-SEM, EDS, and XRD. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat. The promising results successfully demonstrated the immense potential of Si/Zn-TiO2 coatings in dental and biomaterials applications.

  • PDF

알칼리 용제를 이용하여 제조한 셀룰로오스 겔의 카드뮴 흡착특성 (Cadmium Adsorption Characteristic of Cellulose-gel Manufacture using Alkali Solvent)

  • 황교정;권구중;양지욱;황원중;황재현;김대영
    • 펄프종이기술
    • /
    • 제47권6호
    • /
    • pp.113-122
    • /
    • 2015
  • This study was carried out to investigate the characterization of cadmium adsorption by cellulose hydrogel and aerogel. Hydrogel and aerogel were made from ashless pulp dissolved in alkali hydroxide-urea aqueous solution and manufactured in film and bead types. After regeneration of cellulose, hydrogel went through the process of substitution of organic solvent and freeze-dry in order to make aerogel. SEM was used to analyze the microstructure of hydrogel and aerogel. Experiment was conducted in various concentrations and pH conditions to find out the characteristic of cadmium adsorption. After that, EDS was used to identify existence and distribution of cadmium in hydrogel and aerogel. The result from comparisons of cadmium adsorption shows that bead type aerogel has the maximum cadmium adsorption and film type hydrogel has the minimum cadmium adsorption.

Microstructural Evolution of Grade 91 Steel upon Heating at 760~1000℃

  • He, Yinsheng;Chang, Jungchel;Lee, Je-Hyun;Shin, Keesam
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.607-611
    • /
    • 2015
  • The microstructural evolution of Grade 91 tempered martensite ferritic steels heat treated at $760{\sim}1000^{\circ}C$ for two hours was investigated using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), electron backscattered diffraction (EBSD), and transmission electron microscopy(TEM); a microhardness tester was also employed, with a focus on the grain and precipitate evolution process as well as on the main hardening element. It was found that an evolution of tempered martensite to ferrite($760{\sim}850^{\circ}C$), and to fresh martensite($900{\sim}1000^{\circ}C$), occurred with the increase of temperature. Simultaneously, the parabolic evolution characteristics of the low angle grain boundary(LAGB) increased with the increase of the heating temperature(highest fraction of LAGB at $925^{\circ}C$), indicating grain recovery upon intercritical heating. The main precipitate, $M_{23}C_6$, was found to be coarsened slightly at $760{\sim}850^{\circ}C$; it then dissolved at $850{\sim}1000^{\circ}C$. Besides this, $M_3C$ cementite was formed at $900{\sim}1000^{\circ}C$. Finally, the experimental results show that the hardness of the steel depended largely on the matrix structure, rather than on the precipitates, with the fresh martensite showing the highest hardness value.

Transformation of PEO coatings from crater to cluster-based structure with increase in DC voltage and the role of ZrO2nanoparticles

  • Rehman, Zeeshan Ur;Shin, Seong Hun;Koo, Bon Heun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.111-111
    • /
    • 2016
  • Two step PEO ceramic coatings were formed on AZ91 magnesium alloy in $ZrO_2$ nanoparticles and $K_2ZrF_6$ based colloidal electrolyte solution for various voltages. Surface and layers tructure of the coatings was analyzed using SEM (ScanningElectronMicroscope). Structure analysis revealed that surface of the coating was transferred from individual pancake or craters-based structure to cluster-based structure with increasing the voltage of the secondary step process. Further, it was confirmed that the cluster zone was richin Zr-based complexes and formed due to high intensives parks. Increase in the Zr contents as discovered from the EDS analysis confirmed the rise in amorphous form of the Zr-based species, which justified the results of XRD where no increase in the intensity of Zr-based species was observed with increase in voltage. Potentiodynamic polarizariotion and impedance spectroscopy techniques were used to evaluate the corrosion performance of the coatings. The highest corrosion resistance was found for coatings prepared at 240V. The same specimen was found having highest and uniform vickers hardness ~1070.5 HV. The superior mechanical and electrochemical properties of the said coating can be attributed to the defect-less microstructure and the optimal role of $ZrO_2$ nanoparticles in the secondary PEO process at 240V.

  • PDF

니켈기 초내열 합금 GTD 111에서 편석에 의한 합금원소 분포 및 미세조직 변화 (Variation of Alloying Element Distribution and Microstructure due to Microsegregation in Ni-base Superalloy GTD 111)

  • 최백규;김인수;도정현;정중은;조창용
    • 한국주조공학회지
    • /
    • 제35권6호
    • /
    • pp.170-177
    • /
    • 2015
  • Segregation during solidification and homogenization during thermal exposure in GTD 111 were investigated. The microstructures of as-cast, standard heat-treated, and thermally exposed specimens were observed by SEM. A compositional analysis of each specimen was conducted by EDS. The dendrite core was enriched in W and Co, though lower levels of Ti and Ta were observed. An unexpected phase, in this case like the ${\eta}$ phase, was observed due to segregation near the ${\gamma}-{\gamma}^{\prime}$ eutectic in the standard heat-treated specimen. Segregation also induced microstructural evolution near the ${\gamma}-{\gamma}^{\prime}$ eutectic during the standard heat treatment. A quantitative analysis and microstructural observations showed that the thermal exposure at a high temperature enhanced the chemical homogeneity of the alloy.

용융함침법에 의한 반응소결 SiC/SiC 복합재료의 특성 평가 (Property Evaluation of Reaction Sintered SiC/SiC Composites Fabricated by Melt Infiltration Process)

  • 이상필;신윤석
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.205-210
    • /
    • 2007
  • SiC/SiC composites and monolithic SiC materials have been fabricated by the melt infiltration process, through the creation of crystallized SiC phase by the chemical reaction of C and Si. The reinforcing material used in this system was a braided Hi-Nicalon SiC fiber with double interphases of BN and SiC. The microstructures and the mechanical properties of RS-SiC based materials were investigated through means of SEM, TEM, EDS and three point bending test. The matrix morphology of RS-SiS/SiC composites was greatly composed of the SiC phases that the chemical composition of Si and C is different. The TEM analysis showed that the crystallized SiC phases were finely distributed in the matrix region of RS-SiC/SiC composites. RS-SiC/SiC composites also represented a good flexural strength and a high density, accompanying a pseudo failure behavior.

반응소결 SiC 재료의 제조 및 특성 (Fabrication and Characterization of Reaction Sintered SiC Based Materials)

  • 진준옥;이상필;박이현;황희진;윤한기
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.294-299
    • /
    • 2003
  • The efficiency of complex slurry preparation route for the development of high performance RS-SiCf/SiC composites has been investigated. The green bodies for RS-SiC and RS-SiCf/SiC composite materials prior to the infiltration of molten silicon were prepared with various C/SiC complex matrix slurries, which associated with both different sizes of starting SiC particles and blending ratios of starting SiC and carbon particles. The reinforcing materials in the composite system were uncoated and C coated Tyranno SA SiC fiber. The characterization of RS-SiC and RS-SiCf/SiC composite materials was examined by means of SEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, process optimization methodology is discussed.

  • PDF

Immiscibility, nucleation and mechanical properties in the lithia-baria-silica system

  • Ertug, Burcu
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.394-400
    • /
    • 2018
  • The current work investigates the effects of nucleation heat treatments, on the microstructure and mechanical properties of a novel silicate glass in $Li_2O-BaO-SiO_2$ system with 1 mol% $P_2O_5$ as nucleating agent. As-cast glass was exposed to nucleation heat treatments at $490-550^{\circ}C$ for 1-3 h. The microstructural examination was performed by SEM/EDS. The highest Vickers microhardness was determined to be 650 Hv for the sample heat treated at $550^{\circ}C$ for 1 h. The increase in the nucleation time also affected Vickers microhardness and the highest one was determined to be 600 Hv after nucleation for 3 h. The fracture toughness, $K_{IC}$ reached $2.51MPa.m^{1/2}$ after nucleation at $550^{\circ}C$ for 1 h. The nucleation temperatures had a more pronounced effect on the fracture toughnesses in comparison to nucleation times. The indentation toughness data was used to determine Weibull parameters from Ln ln [1/(1-P)]-$lnK_{IC}$ plots. Weibull modulus, m of the samples nucleated at 500, 510, 530, $550^{\circ}C$ for 1h. and $540^{\circ}C$ for 2 h. were determined similarly to be 3.8, 3.5, 4.7 and 3.9, respectively. The rest of the samples indicated higher Weibull moduli, which may be attributed to the formations of microcracks due to the mismatch in between newly formed crystals and remaining glassy matrix.