• Title/Summary/Keyword: microscopy (electron, scanning)

Search Result 5,022, Processing Time 0.031 seconds

Probing the Atomic Structures of Synthetic Monolayer and Bilayer Hexagonal Boron Nitride Using Electron Microscopy

  • Tay, Roland Yingjie;Lin, Jinjun;Tsang, Siu Hon;McCulloch, Dougal G.;Teo, Edwin Hang Tong
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.217-226
    • /
    • 2016
  • Monolayer hexagonal boron nitride (h-BN) is a phenomenal two-dimensional material; most of its physical properties rival those of graphene because of their structural similarities. This intriguing material has thus spurred scientists and researchers to develop novel synthetic methods to attain scalability for enabling its practical utilization. When probing the growth behaviors and structural characteristics of h-BN, the use of appropriate characterization techniques is important. In this review, we detail the use of scanning and transmission electron microscopies to investigate the atomic configurations of monolayer and bilayer h-BN grown via chemical vapor deposition. These advanced microscopy techniques have been demonstrated to provide intimate insights to the atomic structures of h-BN, which can be interpreted directly or indirectly using known growth mechanisms and existing theoretical calculations. This review provides a collective understanding of the structural characteristics and defects of synthetic h-BN films and facilitates a better perspective toward the development of new and improved synthesis techniques.

Transmission Electron Microscopy Sample Preparation of Ge2Sb2Te5 Nanowire Using Electron Beam

  • Lee, Hee-Sun;Lee, Jun-Young;Yeo, Jong-Souk
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.199-202
    • /
    • 2015
  • A simple and novel transmission electron microscopy (TEM) sample preparation method for phase change nanowire is investigated. A $Ge_2Sb_2Te_5$ (GST) nanowire TEM sample was meticulously prepared using nanomanipulator and gas injection system in a field emission scanning electron microscopy for efficient and accurate TEM analysis. The process can minimize the damage during the TEM sample preparation of the nanowires, thus enabling the crystallographic analysis of as-grown GST nanowires without unexpected phase transition caused by e-beam heating.

Biomedical Applications of Stereoscopy for Three-Dimensional Surface Reconstruction in Scanning Electron Microscopes

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.71-75
    • /
    • 2016
  • The scanning electron microscope (SEM) offers two-dimensional (2D) micrographs of three-dimensional (3D) objects due to its inherent operating mechanisms. To overcome this limitation, other devices have been used for quantitative morphological analysis. Many efforts have been made on the applications of software-based approaches to 3D reconstruction and measurements by SEM. Based on the acquisition of two stereo images, a multi-view technique consists of two parts: (i) geometric calibration and (ii) image matching. Quantitative morphological parameters such as height and depth could be nondestructively measured by SEM combined with special software programs. It is also possible to obtain conventional surface parameters such as roughness and volume of biomedical specimens through 3D SEM surface reconstruction. There is growing evidence that conventional 2D SEM without special electron detectors can be transformed to 3D SEM for quantitative measurements in biomedical research.

Relationship of the Distribution Thickness of Dielectric Layer on the Nano-Tip Apex and Distribution of Emitted Electrons

  • Al-Qudah, Ala'a M.;Mousa, Marwan S.
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.155-159
    • /
    • 2016
  • This paper analyses the relationship between the distribution of a dielectric layer on the apex of a metal field electron emitter and the distribution of electron emission. Emitters were prepared by coating a tungsten emitter with a layer of epoxylite resin. A high-resolution scanning electron microscope was used to monitor the emitter profile and measure the coating thickness. Field electron microscope studies of the emission current distribution from these composite emitters (Tungsten-Clark Electromedical Instruments Epoxylite resin [Tungsten/CEI-resin emitter]) have been carried out. Two forms of image have been observed: bright single-spot images, thought to be associated with a smooth substrate and a uniform dielectric layer; and multi-spot images, though to be associated with irregularity in the substrate or the dielectric layer.

Analysis on the Preservation of Scalp Collected from Full-Term Baby Mummy of Medieval Joseon Dynasty (조선시대 태아 미라 두피조직의 보존상태 분석)

  • Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.38 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • In this study, I investigated on the ultrastructure of scalp skin from full term baby mummy by using transmission and scanning electron microscopy. The baby mummy was found within the uterus of a 16th century (Joseon Dynasty) mummified woman aged 20${\sim}$30 years old. In scanning electron microscopic study, I found that the outer surface of scalp skin containing of sweat gland and stratum corneum are well preserved. The skin of the scalp measured about 1 mm in thickness and the epidermis was well distinguished from the dermis. In transmission electron microscopy, the shape and structure of the epithelial cells were not confirmed. I also observed well preserved collagen fibers composed of collagen fibrils with cross banding pattern ultrastructurally. But, the other connective cells were not observed due to decomposition of the dermis.

Characteristics of Clay Minerals in Sihwa Area (시화지구 연약점토의 광물학적 특성)

  • 김낙경;박종식;김유신
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.773-780
    • /
    • 2003
  • The characteristics of soft clays is very important for the land development plan. This study is to investigate correlations between the engineering properties and the characteristics of clay minerals of the disturbed clay samples obtained from Sihwa area. This study included X-Ray Diffraction Analysis, X-Ray Fluorescence Spectrometer Analysis, Scanning Electron Microscopy Analysis and Energy Dispersive X-Ray Spectrometer Analysis. The correlations between the clay mineral properties and the laboratory and field testing results were investigated.

  • PDF

Characteristics in W-EDM of Tungsten Carbide (초경합금의 와이어 방전가공에 의한 특성)

  • 맹민재
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.7-13
    • /
    • 2001
  • Wire electrical discharge machining experiments in conducted to investigate characteristics of acoustic emission (AE) and electrical discharge energy due to current peak (I$_{p}$), pulse on time($\tau$/on/). The AE signals are obtained with a sensor attached to workpiece side. Machining states are identified with scanning electron microscopy and residual stress analyzer. It is demonstrated that the residual stress provide reliable informations about the machining states. Moreover, machining states can be detected successfully using both the residual stress and AE count rate.e.

  • PDF

Cryo-SEM Methodology of Arabidopsis thaliana Stem Using High-Pressure Freezing (고압동결고정을 이용한 애기장대 줄기의 cryo-SEM 분석법)

  • Choi, Yun-Joung;Lee, Kyung-Hwan;Je, A-Reum;Chae, Hee-Su;Jang, Ji-Hoon;Lee, Eun-Ji;Kweon, Hee-Seok
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.111-114
    • /
    • 2012
  • The scanning electron microscopy is an ideal technique for examining plant surface at high resolution. Most hydrate samples, however, must be fix and dehydrate for observation in the scanning electron microscope. Because the microscopes operate under high vacuum, most specimens, especially biological samples, cannot withstand water removal by the vacuum system without morphological distortion. Cryo-techniques can observe in their original morphology and structure without various artifacts from conventional sample preparation. Rapid cooling is the method of choice for preparing plant samples for scanning electron microscopy in a defined physiological state. As one of cryo-technique, high-pressure freezing allows for fixation of native non-pretreated samples up to $200{\mu}M$ thick and 2 mm wide with minimal or no ice crystal damage for the freezing procedure. In this study, we could design to optimize structural preservation and imaging by comparing cryo-SEM and convention SEM preparation, and observe a fine, well preserved Arabidopsis stem's inner ultrastructure using HPF and cryo-SEM. These results would suggest a useful method of cryo-preparation and cryo-SEM for plant tissues, especially intratubule and vacuole rich structure.