• Title/Summary/Keyword: microreaction

Search Result 3, Processing Time 0.022 seconds

Microplant Module (마이크로 플랜트 모듈)

  • Seo J.H.;Shon J.M.;Cho J.Y.;Kwon Y.W.;Choe J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.211-215
    • /
    • 2005
  • Microsystems combine several microcomponents, optimized an entire system, to provide several specific technical functions by the shape of the microstructure. Microfabrication and micromachining techniques have played the key role in the fast development and commercialization of microsystems. Microreaction technology based on microsystems is a powerful tool for the evaluating new process and reaction pathways in chemical engineering. Because of the small characteristic dimensions of microreaction devices, mass and heat transfer processes are enhanced and, in addition, reaction conditions can be precisely controlled for optimizing yield and selectivity. The paper will report on the mixer design principle and explore several application fields of microreaction technology in the chemical synthesis

  • PDF

Microfluidic Array for Simultaneous Detection of Antigen-antibody Bindings (항원-항체 결합의 동시 검출을 위한 미세 유체 어레이)

  • Bae, Young-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.102-107
    • /
    • 2011
  • In this paper, a microfluidic array biochip for simultaneously detecting multiple antigen-antibody bindings was designed and implemented. The biochip has the single channel in which microreaction chambers are serially connected, and the antibody-coated microbeads are packed in each microreaction chamber. In addition, the weir structure was fabricated in the microchannel using the gray-scale photolithography in order to trap the microbeads in the microreaction chamber. Three kinds of antibodies were chosen, and the antibodies were immobilized onto the microbeads by the streptavidin-biotin conjugation. In the experiment, as the fluorescence-labeled antigens were injected into the microchannel, the antigen-antibody bindings were completed in 10 minutes. When the solution with multiple antigens was injected into the microchannel, it was observed that the fluorescence intensity increased in only the corresponding microreaction chambers with few non-specific binding. The microfluidic array biochip implemented in this study provides, even with the consumption of tiny amount of sample and fast reaction time to simultaneously detect multiple immunoreactions.