• Title/Summary/Keyword: microporous membrane

Search Result 95, Processing Time 0.023 seconds

Hydrogen Separation of Carbon Molecular Sieve Membranes Derived from Polyimides Having Decomposable Side Groups (열분해성 그룹이 도입된 폴리이미드로부터 유도된 탄소분자체막의 수소 분리 특성)

  • Young Moo Lee;Youn Kook Kim;Ji Min Lee;Ho Bum Park
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.99-107
    • /
    • 2004
  • Carbon molecular sieve (CMS) membranes were prepared by pyrolysis of polyimides having carboxylic acid groups and applied to the hydrogen separation. The polymeric membranes having carboxylic acid groups showed different steric properties as compared with polymeric membranes having other side groups ($-CH_3$ and $-CF_3$) because of the hydrogen bond between the carboxylic acid groups. However, the microporous CMS membranes were significantly affected by the decomposable side groups evidenced from the wide angle X-rat diffraction, nitrogen adsorption isotherms, and single gas permeation measurement. Furthermore, the gas separation properties of the CMS membranes were essentially affected by the pyrolysis temperature. As a result, the CMS membranes Prepared by Pyrolysis of polyimide containing carboxylic acid froups at $700^{\circ}C$ showed the $H_2$ permeability of 3,809 Baller [$1{\times}10^{-10}$ H $\textrm{cm}^$(STP)cm/$\textrm{cm}^2$.s.cmHg], $H_2$/$N_2$, selectivity of 46 and $H_2$/$CH_4$ selectivity of 130 while the CMS membranes derived from polyimide showed the H$_2$ permeability of 3,272 Barrer, $H_2$/$N_2$ selectivity of 136 and $H_2$/$CH_4$ selectivity of 177.

Studies on the Secondary Battery Application of the Surface Fluorinated Microporous PE Separator Membranes (표면 불소화된 미세다공성 PE 격리막의 이차전지 적용을 위한 연구)

  • Byun, Hong-Sik;Kim, Dae-Hoon;Cho, Hyun-Il;Lee, Byung-Seong;Hong, Byung-Pyo;Lee, Sang-Yun;Nam, Sang-Yong;Seo, Myung-Su;Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2008
  • In this research, the research for enhancing the stability at the mechanical strength and thermal stability and high power through the Direct Fluorination of the Polyethylene (PE, Asahi) for secondary battery was conducted. The surface of according to the fluorine gas exposure time and constructional change were observed through the scanning electron microscope image, and the contact angle. The mechanical property was confirmed through the tensile strength and surface hydrophilic property experiment. Charge and discharge experiment, the lifetime property, and the overcharge test were performed in order to confirm the electrochemical characteristic of produced and we confirmed at the high power that the stability about a temperature was improved.

Fabrication and Mechanical Properties of High-strength Porous Supports for High Temperature Oxygen Transport Membrane (고온 산소분리막용 고강도 다공성 지지체 제조 및 기계적 특성 연구)

  • Park, Geum Sook;Seong, Young-Hoon;Yu, Ji Haeng;Woo, Sang Kuk;Han, Moon Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.423-428
    • /
    • 2013
  • Porous YSZ ceramics are fabricated using 3 mol% yittria-stabilized zirconia (3YSZ) and NiO with different particlesizes (0.6 and 7 ${\mu}m$). Nickel oxide (NiO) is added to the YSZ powder as a pore former with different amounts(40, 50, and 60 vol%) and at different sintering temperatures (1350 and $1400^{\circ}C$) are applied in order to evaluate the temperature effects on the pore and mechanical properties. Heat treatment is conducted after sintering at $700^{\circ}C$ in $H_2$ for the NiO reduction process; then, Ni is removed using a $HNO_3$ etchant solution. According to the NiO contentand sintering temperatures, 41-67% porous YSZ ceramic is obtained and the flexural strength increases, while the porosity decreases with an increasing sintering temperature. The optimum flexural strength ($136.5{\pm}13.4MPa$) and porosity (47%) for oxygen transport porous YSZ membrane can be obtained with 40 vol% of 7 ${\mu}m$ NiO particle at a sintering temperature of $1350^{\circ}C$.

Microporous Bellow Fiber Membrane Prepared from High Density Polyethylene/Ultra High Molecular Weight Polyethylene Blend (고밀도 폴리에틸렌/초고분자량 폴리에틸렌 블렌드로 제조한 미세다공성 중공사막)

  • 남주영;최승은;이광희;장문석;김진호;임순호
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.307-312
    • /
    • 2003
  • Hollow fiber was prepared from the blend of a high density polyethylene (HDPE)/ultra high molecular weight polyethylene (UHMWPE). The changes in the morphology and mechanical property of the hollow fiber were investigated. The commercial product (Sterapore), having a high water permeability, was analyzed with viscosity measurement and FT-IR. The molecular weight of Sterapore was very high and its surface was coated with a vinyl alcohol/vinyl acetate copolymer. The content of UHMWPE in the HDPE/UHMWPE blend was limited below 10 wt%. In order to improve the dispersion of UHMWPE, a mineral oil should be introduced in the blend. The morphology and mechanical property of the hollow fiber of HDPE/UHMWPE blend were similar to those of the commercial product.

Synthesis and application of Polyurethane for Microporous Membrane (미세다공 멤브레인용 폴리우레탄 수지의 합성 및 응용에 관한 연구)

  • Jeon, Jae-Woo;Yang, Jeong-Han;Kim, Duck-Han;Oh, Kyung-Seok;Han, Young-Chul
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.105-105
    • /
    • 2012
  • 기능성 아웃도어 제품을 제조하기 위해서 사용되어지는 멤브레인은 크게 미세다공형과 친수무공형으로 구분할 수 있다. 최근에는 소비자들이 기능성 아웃도어에 쾌적성을 요구하고 있으며, 그 측면에서 본다면 미세다공형 멤브레인이 친수무공형보다 유리하다. 기존의 미세다공형 멤브레인은 고가이며, casting이 불가능한 단점을 가지고 있다. 본 연구에서는 분자구조 및 유화제 첨가에 따른 casting이 가능한 미세다공형 폴리우레탄 멤브레인의 특성에 대하여 연구하였다. Casting용 미세다공형 폴리우레탄은 soft segment와 hard segment의 비가 1/2일 때, 그리고 사용되는 용제가 MEK 단독일 때 안정적인 반응성과 이상적인 필름의 물성을 보이는 것을 확인 하였으며, 수지에 첨가되는 분산유화제의 양이 10%이상일 때 상분리 현상이 발생하지 않음을 확인 할 수 있었다. 개발된 수지의 적용성을 평가한 결과, J-knife를 이용하여 knife over roll 방식으로 25~35$g/m^2$ (dry add on)를 도포하여 $80/120/140^{\circ}C{\times}10m/min$의 다단건조 공정으로 진행했을 때 최적의 물성을 얻을 수 있었다.

  • PDF

Changes in Waterproofness and Breathability after Repeated Laundering and Durability of Electrospun Nanofiber Web Laminates (전기방사한 나노섬유 웹 라미네이트 소재의 반복 세탁에 따른 투습방수 성능 변화 및 내구성)

  • Lee, Kyung;Yoon, Bo-Ram;Lee, Seung-Sin
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.122-129
    • /
    • 2012
  • To develop a waterproof breathable material, we fabricated three kinds of nanofiber web laminates using a massproduced electrospun nanofiber web with different substrates and layer structures. The waterproofness and breathability of nanofiber web laminates were evaluated after repeated launderings and compared with those of conventional waterproof breathable fabrics currently in use, including densely woven fabric, microporous membrane laminated fabric, and coated fabric. The durability of nanofiber web laminates, including adhesion strength, abrasion resistance, tensile strength, and tearing strength, was also assessed and compared with those of conventional waterproof breathable fabrics. The water vapor transmission of nanofiber web laminates increased slightly after repeated launderings, whereas the air permeability somewhat decreased after launderings but still maintained an acceptable level of air permeability. Laundering reduced the resistance to water penetration of nanofiber web laminates, which implies that laminating techniques or substrate materials that could support waterproofness of the laminated structure should be explored. The adhesion strength, abrasion resistance, tensile strength, and tearing strength of nanofiber web laminates were in a range comparable to conventional waterproof breathable materials.

Gas Separation Properties of Microporous Carbon Membranes Containing Mesopores (중간기공을 갖는 미세다공성 탄소 분리막의 기체 투과 특성)

  • Shin, Jae Eun;Park, Ho Bum
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.221-232
    • /
    • 2018
  • The silica containing carbon ($C-SiO_2$) membranes were fabricated using poly(imide siloxane)(Si-PI) and polyvinylpyrrolidone (PVP) blended polymer. The characteristics of porous carbon structures prepared by the pyrolysis of polymer blends were related with the micro-phase separation behaviors of the two polymers. The glass transition temperatures ($T_g$) of the mixed polymer blends of Si-PI and PVP were observed with a single $T_g$ using differential scanning calorimetry. Furthermore, the nitrogen adsorption isotherms of the $C-SiO_2$ membranes were investigated to define the characteristics of porous carbon structures. The $C-SiO_2$ membranes derived from Si-PI/PVP showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures. For the molecular sieving probe, the $C-SiO_2$ membranes were prepared with the ratio of Si-PI/PVP and the pyrolysis conditions, such as the pyrolysis temperature and the isothermal times. Consequently, the $C-SiO_2$ membranes prepared by the pyrolysis of Si-PI/PVP at $550^{\circ}C$ with the isothermal time of 120 min showed the $O_2$ permeability of 820 Barrer ($1{\times}10^{-10}cm^3(STP)cm/cm^2{\cdot}s{\cdot}cmHg$) and $O_2/N_2$ selectivity of 14.

Prediction of Propylene/Propane Separation Behavior of Na-type Faujasite Zeolite Membrane by Using Gravimetric Adsorption (중량식흡착 거동에 기초한 Na형 Faujasite 제올라이트 분리막의 프로필렌/프로페인 분리 거동 예측 연구)

  • Hwang, Juyeon;Min, Hae-Hyun;Park, You-In;Chang, Jong-San;Park, Yong-Ki;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.432-443
    • /
    • 2018
  • In this study, propylene/propane separation behavior of Na-type faujasite zeolite membranes is predicted by observing gravimetric adsorptions of propylene and propane on zeolite 13X. The gravimetric adsorptions were measured by using a magnetic suspension balance (MSB) at temperatures of 323, 343, 363 K and a pressure range of 0.02-1 bar. The pressure was increased at 0.1 bar intervals. As adsorption temperature increased, adsorptions of propylene and propane decreased and propylene/propane adsorption selectivity increased. Also, the diffusion coefficients of propylene and propane were increased as the adsorption temperature increased, following the Arrhenius equation. The maximum propylene/propane diffusion selectivity was 0.9753 at 323 K. The perm-selectivity was calculated from the adsorption data of zeolite 13X and compared with the perm-selectivity measured in the single gas permeation experiment for the Na-type faujasite zeolite membrane. The maximum values for the calculated and measured perm-selectivities were observed at a temperature of 323 K. It could be concluded that the prediction of propylene/propane separation of surface diffusion-based membrane by using gravimetric adsorption data is reasonable. Therefore, it is expected that this prediction method can be applied to the screening of adsorption-based microporous membrane for propylene/propane separation.

The Formation of Hybridized Porous Structure of Al Alloy by Alkali Surface Modification (알칼리 표면개질을 통한 다공성 알루미늄 합금의 하이브리드 기공구조 형성)

  • Seo, Young-Ik;Kim, Young-Moon;Lee, Young-Jung;Kim, Dae-Gun;Lee, Kyu-Hwan;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • To improve the filtration efficiency of porous materials used in filters, an extensive specific surface area is required to serve as a site for adsorption of impurities. In this paper, a method for creating a hybridized porous alloy using a powder metallurgical technique to build macropores in an Al-4 wt.% Cu alloy and subsequent surface modification for a microporous surface with a considerably increased specific surface area is suggested. The macropore structure was controlled by granulation, compacting pressure, and sintering; the micropore structure was obtained by a surface modification using a dilute NaOH solution. The specific surface area of surface-modified specimen increased about 10 times compare to as-sintered specimen that comprised of the macropore structure. Also, the surface-modified specimens showed a remarkable increase in micropores larger than 10 nm. Such a hybridized porous structure has potential for application in water and air purification filters, as well as membrane pre-treatment and catalysis.

An Efficient Method for the Release of Recombinant Penicillin G Amidase from the Escherichia coli Periplasm (대장균의 periplasm으로부터 재조합 PGA 단백질의 효율적이고 간단한 방출 방법)

  • Lee, Sang-Mahn
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1145-1151
    • /
    • 2017
  • In this study, we report on a simple, efficient method for obtaining penicillin G amidase (PGA) from recombinant Escherichia coli using a formulation mixed with detergent and lysozyme. Research was conducted on the extraction efficiency of PGA from the periplasmic space in cells in terms of the type of detergent, detergent concentration, pH, reaction time, and temperature of permeabilization. The extraction yield of PGA in the formulated surfactant/lysozyme treatment was increased by approximately (55-65 U/ml) in comparison with that in the single surfactant treatment. The released PGA solution was concentrated and exchanged with buffer using an ultrafiltration (U/F) system. The yields of diatomite filtration, membrane filtration (M/F), and U/F were 69.7%, 93.8%, and 77.3%, respectively. A total of 212 KU of PGA was recovered. At the 25-L culture scale, the overall yield of extraction using the mixed surfactant/lysozyme method was 49.2%. The specific activity of extracted PGA was 11 U/mg in protein. The concentrated PGA solution was immobilized on microporous silica beads without further purification of PGA. The total immobilization yield of PGA on the resin was 48.7%, while the enzyme activity was 101 U/g. The immobilized PGA was successfully used to produce 6-APA from penicillin G. Our results indicated that a simple extraction method from periplasmic space in E. coli may be used for the commercial scale production of ${\beta}-lactam$ antibiotics using immobilized PGA.