• Title/Summary/Keyword: microparticle feed

Search Result 6, Processing Time 0.023 seconds

The Development of Microparticle Feed Using Microencapsulation (Microencapsulation을 이용한 미립자 사료개발)

  • 이은주;김성구
    • Journal of Life Science
    • /
    • v.6 no.2
    • /
    • pp.129-134
    • /
    • 1996
  • The development of fish feed is essential to aquaculture. Recently, yeast, dhlorella and plankton have been studied and development as the feed of the fry fishes, But, these biological feeds cause the nutritional unbalance to fry fishes, rotifer or artemia. Therefore, to solve these problems, microcapsules with micron sizes were prepared for enhancing the nutritional values of artemia and rotifer which are used as the feed of fry fishes. Microparticle oil capsules were prepared by the complex coacervation technique. The method to make the optimal size of microcapsule which the artemia and rotifer can be easily taken was wvaluated. The size of oil microcapsule in the range of 5-70$\mu$m was obtained by the agitation conditions during coacervation. Capsule size and size distribution were dependent on the agitation speed and agitation time, respectively.

  • PDF

Production of Gemcitabine-Loaded Poly (L-lactic acid) Microparticles Using Supercritical Carbon Dioxide: Effect of Process Parameters (초임계 이산화탄소를 이용한 Gemcitabine 함유 PLLA 미립자 제조: 공정 변수의 영향)

  • Joo, Hyun-Jae;Jung, In-Il;Lim, Gio-Bin;Ryu, Jong-Hoon
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • In this study, poly (L-lactic acid) (PLLA) microparticles containing gemcitabine hydrochloride were prepared by a supercritical fluid process, called aerosol solvent extraction system (ASES), utilizing supercritical carbon dioxide as antisolvent. The influence of process parameters such as temperature, pressure, $CO_2$ and solution flow rate, solution concentration, and feed ratio of drug to polymer on the morphology and characteristics of the microparticles was studied in detail. The gemcitabine-loaded microparticles exhibited a spherical shape with a smooth surface. The entrapment efficiency of gemcitabine increased with increasing temperature, solution concentration and $CO_2$ flow rate and with decreasing drug/polymer feed ratio. The maximum drug loading obtained from the ASES process was found to be about 11%. The ASES-processed PLLA microparticles containing gemcitabine showed a relatively high initial burst due to the presence of surface pores on the microparticles and the poor affinity between drug and polymer.

Recrystallization of RDX High Energy Material Using N,N-Dimethylformamide Solvent and Supercritical $CO_2$ Antisolvent (디메틸포름아마이드 용매와 초임계 이산화탄소 역용매를 사용한 RDX 고에너지 물질의 재결정)

  • Kim, Chang-Ki;Lee, Byung-Chul;Lee, Youn-Woo;Kim, Hyoun-Soo
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.233-238
    • /
    • 2009
  • Supercritical fluid processes have gained great attention as a new and environmentally-benign method of preparing the microparticles of energetic materials like explosives and propellants. In this work, RDX (cyclotrimethylenetrinitramine) was selected as a target explosive. The microparticle formation of RDX using supercritical anti-solvent (SAS) recrystallization process was performed and the effect of operating variables on the size and morphology of prepared particles was observed. N,N-Dimethylformamide was used as organic solvent for dissolving the RDX. The size of the RDX particles decreased remarkably up to less than $10\;{\mu}m$ by SAS recrystallization. In the range of operating conditions of the SAS process studied in this work, the finest RDX particles were obtained at 313.15K, 150 bar, and 15wt% RDX concentration in feed solution.

A Study on the Fine Particle Dispensing Conditions for a Spiral Surface of Round Aluminum Bars (알루미늄 환봉의 나선형 표면 미세입자 분사가공의 조건에 대한 연구)

  • Choi, Sung-Yun;Lee, Eun-Ju;Lee, Sea-Han;Kwon, Dae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.88-93
    • /
    • 2020
  • The goal of this study is to determine the influence of major factors on the spiral surface microparticle injection machining of cylindrical specimens by the statistical method ANOVA. Before the experiment, rod-shaped test specimens and jigs for helical surface spraying were prepared, and the surface roughness was measured with a surface roughness meter. The injection particle, nozzle diameter, and injection pressure were the primary parameters of the experiment. Other factors that were considered were injection height, injection time, revolutions, and feed distance. The surface roughness after machining was measured, and the effects of the surface roughness data on the primary factors were determined with ANOVA.

Phase Behavior of Simvastatin Drug in Mixtures of Dichloromethane and Supercritical Carbon Dioxide and Microparticle Formation of Simvastatin Drug Usins Supercritical Anti-Solvent Process (디클로로메탄과 초임계 이산화탄소의 혼합용매에서 Simvastatin 약물의 상거동과 초임계 역용매 공정을 이용한 Simvastatin 약물 미세입자의 제조)

  • Oh, Dong-Joon;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.34-45
    • /
    • 2007
  • Phase behavior of the ternary systems of water-insoluble simvastatin drug, which is well known to be effective drugs for hypercholesterolemia therapy, in solvent mixtures of dichloromethane and supercritical carbon dioxide was investigated to present a guideline of establishing operating conditions in the particle formation of the drugs by a supercritical anti-solvent recrystallization process utilizing dichloromethane as a solvent and carbon dioxide as an anti-solvent. The solubilities of simvastatin in the mixtures of dichloromethane and carbon dioxide were determined as functions of temperature, pressure and solvent composition by measuring the cloud points of the ternary mixtures at various conditions using a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The solubility of the drug increased as the dichloromethane composition in solution and the system pressure increases at a fixed temperature. A lower solubility of the drug was obtained at a higher temperature. The second half of this work is focused on the particle formation of the simvastatin drug by a supercritical anti-solvent recrystallization process in a cylindrical high-pressure vessel equipped with an impeller. Microparticles of the simvastatin drug were prepared as functions of pressure (8 MPa to 12 MPa), temperature (303.15 K, 313,15 K), feed flow rate of carbon dioxide, and stirring speed (up to 3000 rpm), in order to observe the effect of those process parameters on the size and shape of the drug microparticles recrystallized.

  • PDF