DOI QR코드

DOI QR Code

Recrystallization of RDX High Energy Material Using N,N-Dimethylformamide Solvent and Supercritical $CO_2$ Antisolvent

디메틸포름아마이드 용매와 초임계 이산화탄소 역용매를 사용한 RDX 고에너지 물질의 재결정

  • Kim, Chang-Ki (Department of Chemical Engineering, Hannam University) ;
  • Lee, Byung-Chul (Department of Chemical Engineering, Hannam University) ;
  • Lee, Youn-Woo (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Hyoun-Soo (Agency for Defense Development)
  • 김창기 (한남대학교 생명나노과학대학 나노생명화학공학과) ;
  • 이병철 (한남대학교 생명나노과학대학 나노생명화학공학과) ;
  • 이윤우 (서울대학교 공과대학 화학생물공학부) ;
  • 김현수 (국방과학연구소)
  • Published : 2009.12.31

Abstract

Supercritical fluid processes have gained great attention as a new and environmentally-benign method of preparing the microparticles of energetic materials like explosives and propellants. In this work, RDX (cyclotrimethylenetrinitramine) was selected as a target explosive. The microparticle formation of RDX using supercritical anti-solvent (SAS) recrystallization process was performed and the effect of operating variables on the size and morphology of prepared particles was observed. N,N-Dimethylformamide was used as organic solvent for dissolving the RDX. The size of the RDX particles decreased remarkably up to less than $10\;{\mu}m$ by SAS recrystallization. In the range of operating conditions of the SAS process studied in this work, the finest RDX particles were obtained at 313.15K, 150 bar, and 15wt% RDX concentration in feed solution.

초임계유체공정은 고폭화약이나 추진제로 사용되는 고에너지 물질을 미세입자로 제조하기 위한 새롭고 환경친화적인 방법으로 큰 관심을 받아 왔다. 본 연구에서는 고폭화약 대상물질로서 RDX(cyclotrirnethylenetrinitramine)을 선정하여 초임계역용매 재결정공정을 이용하여 RDX를 미세입자로 제조하는 연구를 수행하였다. 제조된 입자의 크기와 형상에 미치는 초임계공정 운전변수의 영향을 관찰하였다. 본 연구에서는 RDX를 용해시키기 위한 유기용매로 N,N-dimethylformamide를 사용하였다. 초임계역용매 재결정공정에 의해 RDX 입자들의 크기는 $10\;{\mu}m$ 이하로 뚜렷하게 감소하였다. 본 연구에서 설정한 공정변수의 범위에서 재결정되는 RDX 입자들의 크기를 관찰한 결과, 313.15K, 150 bar, 그리고 주입용액에서의 RDX의 농도가 15wt%일 때 가장 작은 RDX 입자가 재결정되었다.

Keywords

References

  1. Teipel, U., "Production of Particles of Explosives," Propell. Explos. Pyrot., 24, 134-139 (1999). https://doi.org/10.1002/(SICI)1521-4087(199906)24:03<134::AID-PREP134>3.0.CO;2-S
  2. Teipel, U., and Mikonsaari, I., "Size Reduction of Particulate Energetic Material," Propell. Explos. Pyrot., 27, 168-174 (2002). https://doi.org/10.1002/1521-4087(200206)27:3<168::AID-PREP168>3.0.CO;2-D
  3. Teipel, U., Forter-Barth, U., Gerber, P., and Krause, H. H., "Formation of Particles of Explosives with Supercritical Fluids," Propell. Explos. Pyrot., 22, 165-169 (1997). https://doi.org/10.1002/prep.19970220313
  4. Pounnortazavi, S. M., and Hajirnirsadeghi, S. S., "Application of Supercritical Carbon Dioxide in Energetic Materials," Ind. Eng. Chem. Res., 44, 6523-6533 (2005). https://doi.org/10.1021/ie0503242
  5. Teipel, U., Krober, H., and Krause, H. H., "Formation of Energetic Materials Using Supercritical Fluids," Propell. ExpIos. Pyrot., 26, 168-173 (2001). https://doi.org/10.1002/1521-4087(200110)26:4<168::AID-PREP168>3.0.CO;2-X
  6. Beckman, E. J., "Supercritical and Near-critical $CO_2$ in Green Chemical Synthesis and Processing," J. Supercrit. Fluids, 28, 121-191 (2004). https://doi.org/10.1016/S0896-8446(03)00029-9
  7. Teipel, U., FoErter-Barth, U., and Krause, H. H., "Crystallization of HMX-Particles by Using the Gas Anti-Solvent-Process," Propell. Explos. Pyrot., 24, 195-198 (1999). https://doi.org/10.1002/(SICI)1521-4087(199906)24:03<195::AID-PREP195>3.0.CO;2-0
  8. Lee, S., Kim, M.-S., Kim, J. S., Park, H. J., Woo, J. S., Lee, B.-C., and Hwang, S.-J., "Controlled Delivery of a Hydrophilic Drug from a Biodegradable Microsphere System by Supercritical Anti-Solvent Precipitation Technique," J. Microencapsul., 23, 741-749 (2006). https://doi.org/10.1080/09687860600945552
  9. Park, S.-J., and Yeo, S.-D., "Recrystallization of Phenylbutazone Using Supercritical Fluid Antisolvent Process," Korean J. Chem. Eng., 25, 575-580 (2008). https://doi.org/10.1007/s11814-008-0097-z
  10. Stepanov, V., Krasnoperov, L. N., Elkina, I. B., and Zhang, X., "Production of Nanocrystalline RDX by Rapid Expansion of Supercritical Solutions," Propell. Explos. Pyrot., 30, 178-183 (2005). https://doi.org/10.1002/prep.200500002
  11. Thakur, R., and Gupta, R. B., "Formation of Phenytoin Nanoparticles Using Rapid Expansion of Supercritical Solution with Solid Cosolvent (RESS-SC) Process," Int. J. Pharm., 308, 190 (2006). https://doi.org/10.1016/j.ijpharm.2005.11.005
  12. Teipel, U., Energetic Materials, Chapter 3, Wiley-VCH, Weinheim, 2005.
  13. Akhavan, J., The Chemistry of Explosives, 2nd ed., The Royal Society of Chemistry, Cambridge, UK, 2004.
  14. Kim, C.-K., Lee, B.-C., Lee, Y.-W., and Kim, H. S., "Solvent Effect on Particle Morphology in Recrystallization of HMX (Cyclotetramethylenetetranitramine) Using Supercritical Carbon Dioxide as Antisolvent," Korean J. Chem. Eng., 26, 1125-1129 (2009). https://doi.org/10.1007/s11814-009-0187-6