• 제목/요약/키워드: micromagnetic calculation

검색결과 7건 처리시간 0.02초

Simple Harmonic Oscillation of Ferromagnetic Vortex Core

  • Kim, Jun-Yeon;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • 제12권3호
    • /
    • pp.113-117
    • /
    • 2007
  • Here we report a theoretical description of ferromagnetic vortex dynamics. Based on Thiele's formulation of the Landau-Lifshitz-Gilbert equation, the motion of the vortex core could be described by a function of the vortex core position. Under a parabolic potential generated in the circular magnetic patterns, the vortex core showed a circular rotation-namely the gyrotropic motion, which could be described by a 2-dimensional simple harmonic oscillator. The gyrotropic frequency and apparent damping constant were predicted and compared with the values obtained micromagnetic calculation.

Effect of the Perpendicular Magnetic Field and Nonadiabatic Spin-transfer Torque on the Vortex Dynamics

  • Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • 제13권4호
    • /
    • pp.157-159
    • /
    • 2008
  • The effect of the perpendicular field on the trajectory of a vortex core driven by spin-transfer torque was investigated using micromagnetic simulations. The trajectory of the vortex core was staggered due to distortions of the moving vortex core. The core trajectory was affected by both the perpendicular field and ${\beta}$ value, which is the relative magnitude of nonadiabatic spin torque to the adiabatic spin torque. This suggests that the effect of the perpendicular field should be considered when examining a vortex core trajectory affected by ${\beta}$.

Spin-Motive Force Caused by Vortex Gyration in a Circular Nanodisk with Holes

  • Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.6-9
    • /
    • 2011
  • Spin-motive force has drawn attention because it contains a fundamental physical property. Spin-motive force creates effective electric and magnetic fields in moving magnetization; a vortex is a plausible system for observing the spin-motive force because of the abrupt profile of magnetization. However, the time-averaged value of a spin-motive force becomes zero when a vortex core undergoes gyroscopic motion. By means of micromagnetic simulation, we demonstrates that a non-zero time-averaged electric field induced by spin-motive force under certain conditions. We propose an experimental method of detecting spin-motive force that provides a better understanding of spin transport in ferromagnetic system.

Hysteresis Loops, Critical Fields and Energy Products for Exchange-spring Hard/soft/hard Trilayers

  • Chen, B.Z.;Yan, S.;Ju, Y.Z.;Zhao, G.P.;Zhang, X.C.;Yue, M.;Xia, J.
    • Journal of Magnetics
    • /
    • 제20권1호
    • /
    • pp.31-39
    • /
    • 2015
  • Macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by a three-dimensional (3D) model for exchange-coupled Sm-Co/${\alpha}-Fe$/Sm-Co trilayers with in-plane collinear easy axes. These results are carefully compared with the popular one-dimensional (1D) micromagnetic models and recent experimental data. It is found that the results obtained from the two methods match very well, especially for the remanence and coercivity, justifying the calculations. Both nucleation and coercive fields decrease monotonically as the soft layer thickness $L^s$ increases while the largest maximum energy product (roughly 50 MGOe) occurs when the thicknesses of hard and soft layers are 5 nm and 15 nm, respectively. Moreover, the calculated angular distributions in the thickness direction for the magnetic moments are similar. Nevertheless, the calculated nucleation and pinning fields as well as the energy products by 3D OOMMF are systematically smaller than those given by the 1D model, due mainly to the stray fields at the corners of the films. These demagnetization fields help the magnetic moments at the corners to deviate from the previous saturation state and facilitate the nucleation. Such an effect enhances as $L^s$ increases. When the thicknesses of hard and soft layers are 10 nm and 20 nm, respectively, the pinning field difference is as large as 30%, while the nucleation fields have opposite signs.

나노디스크에서의 자기 소용돌이 핵의 3차원 동역학 연구 (Three-Dimensional Dynamics of Magnetic Vortex Core in a Nanodisk)

  • 문정환;이경진;김동현;박홍광
    • 한국자기학회지
    • /
    • 제22권6호
    • /
    • pp.195-199
    • /
    • 2012
  • 전산모사를 이용하여, 자기소용돌이의 공진 주파수에 대한 두께 의존성을 조사하였다. 자기소용돌이의 공진 주파수는 2차원(2D)과 3차원(3D) 계산결과 모두 두께가 두꺼워짐에 따라 증가하는 경향을 보였다. 그러나 2D와 3D 계산 결과는 두께가 두꺼워짐에 따라 차이를 보였는데, 이는 3D 계산과 달리 2D 계산에서는 두께가 증가함에 따라 두께방향으로 발생하는 불균질한 자화 구조를 고려하지 않았기 때문이다.

전류에 의한 철단결정의 교류 자기감수율 : 전류 변화에 의한 효과 (AC susceptibility of current-carrying iron whiskers : Effect of current variation)

  • Jae-Gwang Lee
    • 한국자기학회지
    • /
    • 제5권3호
    • /
    • pp.179-184
    • /
    • 1995
  • {100} 철단결정에 자기장을 가해주거나 혹은 자기장 없이 전류만을 변화 시킬 때의 교류 자기감수율에 관하여 연구 하였다. 작은 자기장과 전류를 철단결정에 걸어줄때, 단결정의 단연적 중앙끈처에는 정사각형 자구가 형성된다. 실험을 통하여 이 자구의 자기화 방향으로 자장을 걸어주변 걸어주는 전류크기와 전류방향의 영향을 받음을 보인다. 이 실험 결과는 전류에의해 중앙에 형성된 자구가 전류의 증감함에따라 변화하는 자구크기로 설명할 수 있다. 실험으로 측정된 자기강수율을 설명하기 위하여 미세 자기이론을 사용하였으며, energy 값을 구히기 위하여 간단한 model을 설정하였다. 이 model로부터 교류 자기감수율을 구할 수 있었으며, 이때 계산한 교류 자기감수율은 한 안정된 구조에서 다른 안정된 구조로 변화하는 전류를 제외한 거의 대부분 전류에 대하여 정량적으로 설명할 수 있었다.

  • PDF

Effect of α-Fe Content on the Magnetic Properties of MnBi/α-Fe Nanocomposite Permanent Magnets by Micro-magnetic Calculation

  • Li, Y.Q.;Yue, M.;Zuo, J.H.;Zhang, D.T.;Liu, W.Q.;Zhang, J.X.;Guo, Z.H.;Li, W.
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.245-249
    • /
    • 2013
  • A finite element model was built for MnBi/${\alpha}$-Fe nanocomposite permanent magnets, and the demagnetization curves of the magnets were simulated by micro-magnetic calculation. The microstructure of the cubic model is composed of 64 irregular grains with an average grain size of 20 nm. With the volume fraction of soft magnetic phase (t vol. %) ranged from 5 to 20 vol. %, both isotropic and anisotropic nanocomposite magnets show typical single-phase permanent magnets behavior in their demagnetization curves, illustrating good intergranular exchange coupling effect between soft and hard magnetic phases. With the increase of volume fraction of soft magnetic phase in both isotropic and anisotropic magnets, the coercive force of the magnets decreases monotonically, while the remanence rises at first to a peak value, then decreases. The optimal values of maximum energy products of isotropic and anisotropic magnets are 84 and $200kJ/m^3$, respectively. Our simulation shows that the MnBi/${\alpha}$-Fe nanocomposite permanent magnets own excellent magnetic properties and therefore good potential for practical applications.