• 제목/요약/키워드: microfluidic

검색결과 427건 처리시간 0.039초

Polymers for Microfluidic Chips

  • Song Simon;Lee Kuen-Yong
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.121-128
    • /
    • 2006
  • Microfluidic systems have attracted much research attention recently in the areas of genomics, proteomics, pharmaceutics, clinical diagnostics, and analytical biochemistry, as they provide miniaturized platforms for conventional analysis techniques. The microfluidic systems allow faster and cheaper analysis using much smaller amounts of sample and reagent than conventional methods. Polymers have recently found useful applications in microfluidic systems due to the wide range of available polymeric materials and the relative ease of chemical modification. This paper discusses the fundamentals of microfluidic systems and the roles, essential properties and various forms of polymers used as solid supports in microfluidic systems, based on the recent advances in the use of polymers for microfluidic chips.

Recent Progress on Microfluidic Electrophoresis Device Application in Mass Spectrometry

  • Roy, Swapan Kumar;Kim, Seongnyeon;Yoon, Jung H.;Yoon, Yong-Kyu;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • 제9권1호
    • /
    • pp.1-16
    • /
    • 2018
  • Microfluidic technologies hold high promise and emerge as a potential molecular tool to facilitate the progress of fundamental and applied biomedical researches by enabling miniaturization and upgrading current biological research tools. In this review, we summarize the state of the art of existing microfluidic technologies and its' application for characterizing biophysical properties of individual cells. Microfluidic devices offer significant advantages and ability to handle in integrating sample processes, minimizing sample and reagent volumes, and increased analysis speed. Therefore, we first present the basic concepts and summarize several achievements in new coupling between microfluidic devices and mass spectrometers. Secondly, we discuss the recent applications of microfluidic chips in various biological research field including cellular and molecular level. Finally, we present the current challenge of microfluidic technologies and future perspective in this study field.

Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient

  • Kim, Ji Hyeon;Sim, Jiyeon;Kim, Hyun-Jung
    • Biomolecules & Therapeutics
    • /
    • 제26권4호
    • /
    • pp.380-388
    • /
    • 2018
  • Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro, we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

Role of network geometry on fluid displacement in microfluidic color-changing windows

  • Ucar, Ahmet Burak;Velev, Orlin D.;Koo, Hyung-Jun
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.865-884
    • /
    • 2016
  • We have previously demonstrated a microfluidic elastomer, which changes apparent color and could have potential applications in smart windows. The practical use of such functional microfluidic systems requires rapid and uniform fluid displacement throughout the channel network with minimal amount of liquid supply. The goal of this simulation study is to design various microfluidic networks for similar applications including, but not limited to, the color-switching windows and compare the liquid displacement speed and efficiency of the designs. We numerically simulate and analyze the liquid displacement in the microfluidic networks with serpentine, parallel and lattice channel configurations, as well as their modified versions with wide or tapered distributor and collector channels. The data are analyzed on the basis of numerical criteria defined to evaluate the performance of the corresponding functional systems. We found that the lattice channel network geometry with the tapered distributors and collectors provides most rapid and uniform fluid displacement with minimum liquid waste. The simulation results could give an important guideline for efficient liquid supply/displacement in emerging functional systems with embedded microfluidic networks.

공압 핫프레스를 이용한 마이크로 폴리카보네이트 성형에 관한 연구 (A Study on Polycarbonate Microfabrication Using a Pneumatic Hot Press)

  • 여창영;박태현
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.106-112
    • /
    • 2021
  • Thermoplastic microfluidic devices are used in BioMEMS for medical and biotechnology applications, such as gene extraction, DNA analysis, and virus detection. In this research, a simple fabrication protocol with a commercially available pneumatic hot press is proposed and demonstrated for polycarbonate microfluidic devices. Microfluidic channels with a width of 200 ㎛ and a height of 10 ㎛ were designed and machined onto a brass plate as a mold insert using a CNC milling machine. The resulting microfluidic channels on the mold insert were assessed and found to have an actual width of 198 ㎛ and a height of 10 ± 0.25 ㎛. The microfluidic channels were replicated on a polycarbonate sheet using the proposed replication technique at 146℃ for 20 minutes under a constant load of 2400 kgf. The devices were then naturally cooled to 100℃ while maintaining the same pressure. It was found that the microchannels were successfully replicated in the polycarbonate, with a width of 198 ㎛ and a height of 10.07 ㎛. The proposed replication technique thus offers the rapid mass production of high-quality microfluidic devices at a low cost with a process that, unlike conventional photolithography systems, does not require expensive equipment.

Assay development and HTS on microfluidic Lab-on-a-chip

  • Yang, Eun-Gyeong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.73-78
    • /
    • 2002
  • Microfluidic lab-on-a-chip (LOC) systems have enabled a new generation ofassay technologies in chemical and biomedical sciences. Caliper's microfluidic LOC systems contain a network of microscopic channels through which fluids and chemical are moved in order to perform experiments. The main advantages of these continuous-flow devices are integration and automation of multiple steps in complex analytical procedures to improve the reproducibility of the results, and eliminated the manual labor, time and pipetting errors involved in analyses. The present talk is devoted to give a brief introduction of microfluidic basics and to present in applying continuous-flow microchips to drug screening with model enzyme assays.

  • PDF

Biochemical Reactions on a Microfluidic Chip Based on a Precise Fluidic Handling Method at the Nanoliter Scale

  • Lee, Chang-Soo;Lee, Sang-Ho;Kim, Yun-Gon;Choi, Chang-Hyoung;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권2호
    • /
    • pp.146-153
    • /
    • 2006
  • A passive microfluidic delivery system using hydrophobic valving and pneumatic control was devised for microfluidic handling on a chip. The microfluidic metering, cutting, transport, and merging of two liquids on the chip were correctly performed. The error range of the accuracy of microfluid metering was below 4% on a 20 nL scale, which showed that microfluid was easily manipulated with the desired volume on a chip. For a study of the feasibility of biochemical reactions on the chip, a single enzymatic reaction, such as ${\beta}-galactosidase$ reaction, was performed. The detection limit of the substrate, i.e. fluorescein $di-{\beta}-galactopyranoside$ (FDG) of the ${\beta}-galactosidase$ (6.7 fM), was about 76 pM. Additionally, multiple biochemical reactions such as in vitro protein synthesis of enhanced green fluorescence protein (EGFP) were successfully demonstrated at the nanoliter scale, which suggests that our microfluidic chip can be applied not only to miniaturization of various biochemical reactions, but also to development of the microfluidic biochemical reaction system requiring a precise nano-scale control.

미소유체시스템을 위한 실용적인 패키징 기술 (Practical Packaging Technology for Microfluidic Systems)

  • 이환용;한송이;한기호
    • 대한기계학회논문집B
    • /
    • 제34권3호
    • /
    • pp.251-258
    • /
    • 2010
  • 본 논문은 다기능 미소유체시스템의 일체형 패키징을 위한 MSI (microfluidic system interface) 기술을 제안하고, 이를 설계, 제작, 시험 평가하였다. MSI 기술을 통해 플러그 방식의 유체 인터커넥터, 유체제어를 위한 미소밸브, 광학 인터페이스를 위한 광학창을 유체시스템에 일체형으로 쉽게 구현할 수 있었다. MSI 기술의 유용성을 보이기 위해 미소 유전자시료전처리시스템에 적용되었으며, 미소 유전자시료전처리시스템은 세포정제, 세포분리, 세포용해, DNA 고체상추출, 중합효소연쇄반응, 그리고 모세관전기영동 기능으로 구성되었다. 나아가 MSI 기술이 적용된 미소 유전자시료전처리시스템의 DNA 고체상추출 및 중합효소연쇄반응의 실험결과로부터 MSI가 미소유체시스템을 위한 실용적 패키징 기술임이 검증되었다.

Microfluidic Immunoassay Platform Using Antibody-immobilized Glass Beads and Its Application for Detection of Escherichia coli O157:H7

  • Lee, Nae-Yoon;Yang, Yoon-sun;Kim, Youn-Sang;Park, Sung-su
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.479-483
    • /
    • 2006
  • We developed a microfluidic immunoassay platform for the detection of various analytes such as bacterial pathogen by packing antibody-immobilized glass beads in spatially-isolated microchambers on a microfluidic device. Primary amines of antibody were covalently conjugated to carboxyl-terminated glass beads previously treated with aminosilane followed by glutaraldehyde. Through this covalent binding, up to 905 $\mu$g immunoglobulin G (IgG) per gram of glass beads was immobilized. For application, glass beads attaching antibody specific to Escherichia coli O157:H7, a foodborne pathogen, were packed into a microfluidic device and used for the detection of the serotype. This prototype immunoassay device can be used for the simultaneous detection of multiple analytes by sequentially packing different-sized glass beads attaching different antibody in discrete microchambers on a single microfluidic device.

Microfluidic Image Cytometry (μFIC) Assessments of Silver Nanoparticle Cytotoxicity

  • Park, Jonghoon;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4023-4027
    • /
    • 2012
  • Cytotoxicity assessment of silver nanoparticles (AgNPs) was performed using MTT-based microfluidic image cytometry (${\mu}FIC$). The $LC_{50}$ value of HeLa cells exposed to AgNPs in the microfluidic device was estimated as 46.7 mg/L, which is similar to that estimated by MTT-based IC for cells cultured in a 96 well plate (49.9 mg/L). These results confirm that the ${\mu}FIC$ approach can produce cytotoxicity data that is reasonably well-matched with that of the conventional 96 well plate system with much higher efficiency. This ${\mu}FIC$ method provides many benefits including ease of use and low cost, and is a more rapid in vitro cell based assay for AgNPs. This may aid in speeding up data acquisition in the field of nanosafety and make a significant contribution to the quantitative understanding of nanoproperty-toxicity relationships.