• Title/Summary/Keyword: microcontroller system

Search Result 318, Processing Time 0.021 seconds

IoT Enabled Smart Emergency LED Exit Sign controller Design using Arduino

  • Jung, Joonseok;Kwon, Jongman;Mfitumukiza, Joseph;Jung, Soonho;Lee, Minwoo;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.76-81
    • /
    • 2017
  • This paper presents a low cost and flexible IoT enabled smart LED controller using Arduino that is used for emergency exit signs. The Internet of Things (IoT) is become a global network that put together physical objects using network communications for the purpose of inter-communication of devices, access information on internet, interaction with users as well as permanent connected environment. A crucial point in this paper, is underlined on the potential key points of applying the Arduino platform as low cost, easy to use microcontroller with combination of various sensors applied in IoT technology to facilitate and establishment of intelligent products. To demonstrate the feasibility and effectiveness of the system, devices such as LED strip, combination of various sensors, Arduino, power plug and ZigBee module have been integrated to setup smart emergency exit sign system. The general concept of the proposed system design discussed in this paper is all about the combination of various sensor such as smoke detector sensor, humidity, temperature sensor, glass break sensors as well as camera sensor that are connected to the main controller (Arduino) for the purpose of communicating with LED exit signs displayer and dedicated PC monitors from integrated system monitoring (controller room) through gateway devices using Zig bee module. A critical appraisal of the approach in the area concludes the paper.

Development of a Portable Digital Electrocardiograph(ECG) measurable with Gel-less Metal Electrodes (젤리스 금속 전극으로 측정가능한 휴대용 디지털 심전도계의 개발)

  • Nam, Young-Jin;Park, Kwang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1903-1907
    • /
    • 2013
  • Heart condition should be observed for long periods of time because it does not appear abnormal all the time. However, there are many difficulties checking our health for a long time due to its size, operation of equipment, and cost. To solve these problems, an electrocardiograms(ECG), specially interfacing three gel-less metal electrodes for low cost portable applications, is designed and implemented. Gel-less metal electrodes are used for ECG monitoring system instead of gel-type electrodes that can cause skin rashes and itching problem. The whole ECG system consists of two parts-analog and digital circuits. The analog measurement circuit that has a 18*25mm size is made up of op-amps maintaining a sufficiently high common-mode noise rejection and passive elements of SMD type. Analog heart signal is converted to digital stream suitable for display on a TFT-LCD by an 8-bit microcontroller. The size of the completed ECG system is 25*80*50mm and its weighing is about 150g, which is small enough to be easily used. Therefore, the implemented ECG system can be used as a portable one.

A Study on the development of ECU for Adaptive Front-lighting System (Adaptive Front-lighting System용 ECU 개발에 관한 연구)

  • Kim, Gwan-Hyung;Kang, Sung-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2078-2082
    • /
    • 2007
  • Recently, according to traffic accident statistics, traffic accidents occurring at night are as frequent as those during daytime, but their death rate is 1.5 times higher than that of daytime traffic accidents. This problem originates that the insufficient range of vision security of a driver causes the inappropriate accident confrontation. Therefore, in this paper, a microcontroller-based digital control method for the superior performance in headlight system is presented for optimal control that can adapt complex transient state, steady state and various environments. Specially in vehicles# headlight, its fundamental purpose is to implement the artificial headlight system which automatically controls the lighting patterns most adaptive to driving, road and weather conditions. Therefore we aimed at the development of headlight system, focused on the implementation of an artificial vehicle, of more advanced convenience and safety for drivers.

Concrete structural health monitoring using piezoceramic-based wireless sensor networks

  • Li, Peng;Gu, Haichang;Song, Gangbing;Zheng, Rong;Mo, Y.L.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.731-748
    • /
    • 2010
  • Impact detection and health monitoring are very important tasks for civil infrastructures, such as bridges. Piezoceramic based transducers are widely researched for these tasks due to the piezoceramic material's inherent advantages of dual sensing and actuation ability, which enables the active sensing method for structural health monitoring with a network of piezoceramic transducers. Wireless sensor networks, which are easy for deployment, have great potential in health monitoring systems for large civil infrastructures to identify early-age damages. However, most commercial wireless sensor networks are general purpose and may not be optimized for a network of piezoceramic based transducers. Wireless networks of piezoceramic transducers for active sensing have special requirements, such as relatively high sampling rate (at a few-thousand Hz), incorporation of an amplifier for the piezoceramic element for actuation, and low energy consumption for actuation. In this paper, a wireless network is specially designed for piezoceramic transducers to implement impact detection and active sensing for structural health monitoring. A power efficient embedded system is designed to form the wireless sensor network that is capable of high sampling rate. A 32 bit RISC wireless microcontroller is chosen as the main processor. Detailed design of the hardware system and software system of the wireless sensor network is presented in this paper. To verify the functionality of the wireless sensor network, it is deployed on a two-story concrete frame with embedded piezoceramic transducers, and the active sensing property of piezoceramic material is used to detect the damage in the structure. Experimental results show that the wireless sensor network can effectively implement active sensing and impact detection with high sampling rate while maintaining low power consumption by performing offline data processing and minimizing wireless communication.

Instruction-Level Power Estimator for Sensor Networks

  • Joe, Hyun-Woo;Park, Jae-Bok;Lim, Chae-Deok;Woo, Duk-Kyun;Kim, Hyung-Shin
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.47-58
    • /
    • 2008
  • In sensor networks, analyzing power consumption before actual deployment is crucial for maximizing service lifetime. This paper proposes an instruction-level power estimator (IPEN) for sensor networks. IPEN is an accurate and fine grain power estimation tool, using an instruction-level simulator. It is independent of the operating system, so many different kinds of sensor node software can be simulated for estimation. We have developed the power model of a Micaz-compatible mote. The power consumption of the ATmega128L microcontroller is modeled with the base energy cost and the instruction overheads. The CC2420 communication component and other peripherals are modeled according to their operation states. The energy consumption estimation module profiles peripheral accesses and function calls while an application is running. IPEN has shown excellent power estimation accuracy, with less than 5% estimation error compared to real sensor network implementation. With IPEN's high precision instruction-level energy prediction, users can accurately estimate a sensor network's energy consumption and achieve fine-grained optimization of their software.

  • PDF

Design of Bowing-Activity Monitoring and Automatic Detection System Using 3-Axis Accelerometer (3축-가속도 센서를 이용한 배례(拜禮)동작 모니터링 및 자동검출 시스템 설계)

  • Lee, Young-Jae;Lee, Pil-Jae;Cha, Ji-Young;Sunoo, Sub;Hwang, Jin-Sang;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this paper, a new reliable portable activity monitoring device implemented with the buddhist-style bowing activity and walking step detection algorithm, is presented. In order to monitor the bowing and walking activities, miniaturized 3-axis accelerometer sensor with the sensitivity of 800 mV/g was used. After initial signal conditioning, vector magnitude of accelerometer signals was calculated. Syntactic peak detection method was used in order to feature points. All signal processing algorithms were implemented in ultra-low power microcontroller MSP430 with double precision floating point arithmetic. For evaluation, 19 young man($24.22\pm5.22$ yrs) and woman($22.28\pm2.72$ yrs) were involved. The accuracy of the proposed algorithms were 98.91 %($\pm0.011$) for walking step detection and 98.25 %($\pm0.023$) for buddhist-style bowing activity. Comparing to the commercialized pedometer accuracy, 87.1 %($\pm0.058$), the proposed walking step detection algorithms show more reliable accuracy.

Special quality research about action output waveform change by gap (1.0mm and 1.6mm) difference of $CO_2$ laser for skin disease (피부질환을 위한 $CO_2$ 레이저의 공극 (1.0mm 및 1.6mm)차이에 따른 동작출력 파형변화에 관한 특성연구)

  • Kim, Whi-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.156-158
    • /
    • 2007
  • Laser wave length can have evaporation effect by absorption because outer skin or tissue of focus is consisted of water almost though absorption of water occurs more than 90% almost in formation thickness of very thin floor Can operate outer skin, steam by floor and correct incision of formation is available. Suture surgical operation is avaliable to vein or lymph system and surgical operation region can dry and see as eye and radish bleeding surgical operation is avaliable Specially, stability of tube both end output about pulse by weight very, this research can cause various curative effect because can reduce bulk and control easily current wave style of medical laser using electric power conversion device of high frequency way. If introduce ZVS (Zero Voltage Switching) or ZVZCS (Zero Voltage and Zero Current Switching), is more profitable because can reduce switching damage Because electric power department of proposed medical laser can do stable soft-switching in wide subordinate extent introducing ZVZCS technique by the first help and control department composes microcontroller, output current waveform user have free form make. Result that experiment because design and manufacture, brought result that improve of 20% than existing equipment, and will be bought to get into superior result if supplement as systematic late.

  • PDF

PLL Control Method for Precise Speed Control of Slotless PM Brushless DC Motor Using 2 Hall-ICs (2 Hall-ICs를 이용한 Slotless PM Brushless DC Motor의 정밀속도제어를 위한 PLL 제어방식)

  • Woo M. S.;Yoon Y. H.;LEE T. W.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.665-669
    • /
    • 2004
  • Generally, Slotless PM BLDC drive system is necessary that the three Hall-ICs evenly be distributed around the stator circumference and encoder be installed in case of the 3 phase motor. So, the Hall-ICs are set up in this motor to detect the main flux from the rotor, and the output signal from Hall-ICs is used to drive a power transistor to control the winding current. However, instead of using three Hall-ICs and encoder, we used only two Hall-ICs for the permanent magnet rotor position and for the speed feedback signals, and also for a microcontroller of 16-bit type (80C196KC) with the 3 phase Slotless PM BLDC whose six stator and two rotor designed. Two Hall-IC Hc and $H_B$ are placed on the endplate at 120 degree intervals, and with these elements, we can estimate information of the others phase in sequence through a rotating rotor.

  • PDF

Measurement of the Biological Active Point using the Bio-electrical impedance analysis based on the Adaptive Frequency Tracking Filter (적응주파수추적필터기반의 생체임피던스분석을 통한 생물학적활성점측정에 관한 연구)

  • Park, Hodong;Lee, Kyoungjoung;Yeom, Hojun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.109-114
    • /
    • 2013
  • The biological active points (BAP) are known as low resistance spots or good electro-permeable points. In this paper, a new method for BAP detection using the bio-impedance measurement system based on the adaptive frequency tracking filter (AFTF) and the transition event detector is presented. Also, the microcontroller process continuous time demodulation of the modulated signal by multi frequency components using the AFTF. The transition event detector based on the phase space method is applied about each frequency using the BAP equivalent model which is proposed.

Development of Analytical Models for Switched Reluctance Machine and their Validation

  • Jayapragash, R.;Chellamuthu, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.990-1001
    • /
    • 2015
  • This paper presents analysis of Switched Reluctance Machine (SRM) using Geometry Based Analytical Model (GBAM), Finite Element Analysis (FEA) and Fourier Series Model (FSM) with curve fitting technique. Further a Transient Analysis (TA) technique is proposed to corroborate the analysis. The main aim of this paper is to give in depth procedure in developing a Geometry Based Analytical Model of Switched Reluctance Machine which is very accurate and simple. The GBAM is developed for the specifications obtained from the manufacturer and magnetizing characteristic of the material used for the construction. Precise values of the parameters like Magneto Motive Force (MMF), flux linkage, inductance and torque are obtained for various rotor positions taking into account the Fringing Effect (FE). The FEA model is developed using MagNet7.1.1 for the same machine geometry used in GBAM and the results are compared with GBAM. Further another analytical model called Fourier Series Model is developed to justify the accuracy of the results obtained by the methods GBAM and FEA model. A prototype of microcontroller based SRM drive system is constructed for validating the analysis and the results are reported.