• 제목/요약/키워드: microchannel

Search Result 395, Processing Time 0.025 seconds

Fabrication of Disposable Protein Chip for Simultaneous Sample Detection

  • Lee, Chang-Soo;Lee, Sang-Ho;Kim, Yun-Gon;Oh, Min-Kyu;Hwang, Taek-Sung;Rhee, Young-Woo;Song, Hwan-Moon;Kim, Bo-Yeol;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.455-461
    • /
    • 2006
  • In this study, we have described a method for the fabrication of a protein chip on silicon substrate using hydrophobic thin film and microfluidic channels, for the simultaneous detection of multiple targets in samples. The use of hydrophobic thin film provides for a physical, chemical, and biological barrier for protein patterning. The microfluidic channels create four protein patterned strips on the silicon surfaces with a high signal-to-noise ratio. The feasibility of the protein chips was determined in order to discriminate between each protein interaction in a mixture sample that included biotin, ovalbumin, hepatitis B antigen, and hepatitis C antigen. In the fabrication of the multiplexed assay system, the utilization of the hydrophobic thin film and the microfluidic networks constitutes a more convenient method for the development of biosensors or biochips. This technique may be applicable to the simultaneous evaluation of multiple protein-protein interactions.

Solvent-assisted sealing of poly(methylmethacrylate) microchannel under mild conditions (용매를 이용한 Poly(methylmethacrylate)의 저온 저압 본딩 및 마이크로 채널 표면의 선택적 소수성 코팅기법 개발)

  • Lee, Jae-Seon;Lee, Nae-Yun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.110-110
    • /
    • 2017
  • 마이크로 플루이딕 디바이스는 화학, 생물학 실험 및 생체 의학 진단을 위한 플랫폼으로 지난 20년간 그 사용 및 연구가 증가되어 왔다. 마이크로 플루이딕 디바이스를 제작하는 데 있어 가장 일반적으로 사용되는 재료는 실리콘이지만 비용이 많이 들고 불투명하므로 광학 검출이 필요한 곳에 적용이 제한된다. 이러한 측면에서 열가소성 플라스틱은 상업화의 중요한 요소인 대량 생산에 있어 큰 잠재력을 가지고 있으며 저렴하고, 가공이 쉽고, 유연하고, 광학적으로 투명하고, 화학적으로 불활성이며, 생체적합성을 가진다. 본 연구에서는 열가소성 플라스틱의 일종인 PMMA Poly(methylmethacrylate)를 효율적으로 접합하기 위해 비교적 낮은 온도와 낮은 압력에서 에탄올을 활용한 접착방식을 개발하였다. 먼저, PMMA 기판의 전체 표면을 $80^{\circ}C$에서 20 분 동안 에탄올로 처리한 후, $60^{\circ}C$에서 20 분간 열 압착하는 방식으로 영구적인 결합이 이루어졌다. 결합 강도 및 채널의 sealing 정도를 확인하기 위해, 인장 강도, 누수 및 파열 테스트를 수행하였다. 결합강도는 약 12.4 MPa로 타 연구와 비교할 때 매우 높았으며 마이크로 채널의 전체 내부 체적보다 거의 450 배 높은 강한 액체 흐름을 견딜 정도로 견고한 결합이 유지되었다. 열가소성 플라스틱의 본딩에 사용되는 유기 용매는 광학 특성을 희생시키지 않으면서 결합 속도를 높일 수 있지만, 결합 공정 중에 용매로 인해 마이크로 채널이 막히는 현상이 발생될 수 있다. 따라서, 견고한 본딩을 유지하면서 채널 막힘을 방지하기 위해 마이크로 채널을 소수성으로 선택적으로 처리하여 내벽의 표면 특성을 튜닝해 주는 기법을 추가로 적용하였다. 본 연구에서 사용한 방법은 아민-PDMS (polydimethylsiloxane) 링커를 적용하여 기판 표면의 극성을 변경시켜 주었다. 아민-PDMS 링커는 PC (polycarbonate), PET (polyethylene terephthalate), PVC (polyvinyl chloride) 및 PI (polyimide)와 같은 다양한 열가소성 플라스틱의 표면 소수성을 현저히 증가시키며 화학적, 열적 안정성이 뛰어나다. 아민-PDMS 링커는 PMMA의 카보닐 그룹과 반응할 수 있는 아민 사이드 그룹을 포함하는 PDMS 백본으로 구성되며 처리된 대상표면을 소수성으로 만든다. 아민-PDMS 링커 처리 이후 채널은 소수성으로 변화되었으며 이는 접촉각(contact angle)의 증가로 확인되었다. 코팅된 채널을 에탄올로 30분간 80도에서 처리하여도 소수성은 그대로 유지되어 마이크로 채널의 선택적인 소수성 코팅이 성공적으로 수행되었다.

  • PDF

Development of Wall Slip Models for Rarefied Gas and MEMS Thermal Fluid Flows (희박기체 및 MEMS 열유동장 해석을 위한 벽면 슬립모델 개발)

  • Myong, Rho-Shin;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.90-97
    • /
    • 2002
  • Wall slip models are essential to the study of nonequilibrium gas transport in rarefied and microscale condition that can be found in gas flows associated with aerospace vehicle, propulsion system, and MEMS. The Maxwell slip model has been used for this type of problem, but it has difficulty in defining the so-called accommodation coefficient and has not been very effective in numerical implementation. In the present study, on the basis of Langmuir's theory of the adsorption of gases on metals, a physical slip model is developed. The concept of the accommodation coefficient and the difference of gas particles are clearly explained in the new model. It turned out that the Langmuir model recovers the Maxwell model in the first-order approximation. The new models are also applied to various situations including internal flow in a microchannel. Issues of validation of models are treated by comparing analytic results with experiment.

Microfabrication of the ISFET Cartridge by empolying Nozzle system (노즐의 원리를 도입한 ISFET 소형 카트리지 제작)

  • Kim, Hyun-Soo;Lee, Young-Chul;Kim, Young-Jin;Cho, Byung-Woog;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.320-326
    • /
    • 1999
  • A small cartridge, with a nozzle system for washing off the dirt from the surfaces of sensing gates, was fabricated. The proposed nozzle structure was designed for cartridge by using the simulation tool of fluid (CFD-ACE). Whole size of the fabricated cartridge by using micromachining techniques is about $2.6\;cm{\times}1.5\;cm$, the size of the washing nozzle is $0.2\;mm{\times}0.6\;mm$ and its dead volume is only about $20\;{\mu}l$. A micro-reference electrode was achieved by employing a differential system with ISFETs/QRE (quasi-reference electrode)/REFET (reference field-effect transistor). Metal electrodes was deposited at both ends of blowing channel were used to check the presence of bubble in the microchannel. The pH-ISFET was inserted into the fabricated cartridge and the washing effect of the nozzle system in cartridge was invested.

  • PDF

The Review of Studies on Pressure Drop and Heat Transfer In Microchannels

  • Hwang, Yun-Wook;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 2005
  • This paper reviews the studies on the pressure drop and the heat transfer in microchannels. Although a lot of studies about the single-phase flow have been done until now, conflicting results are occasionally reported about flow transition from laminar flow to turbulent flow, friction factor, and Nusselt number. Some studies reported the early flow transition due to relatively greater wall effect like surface roughness, but the other studies showed that the flow transition occurred at the Reynolds number of about 2300 and the early flow transition might be due to less accurate measurement of the channel geometry. Also, there have been arguments whether the conventional relation based upon continuum theory can be applied to the fluid flow and the heat transfer in microchannels without modification or not. The studies about the two-phase flow in microchannels have been mostly about investigating the flow pattern and the pressure drop in rectangular channels using two-component, two-phase flow like air/water mixture. Some studies proposed correlations to predict two-phase flow pressure drop in microchannels. They were mostly based on Lockhart-Martinelli model with modification on C-coefficient, which was dependent on channel geometry, Reynolds number, surface tension, and so on. Others investigated the characteristics of flow boiling heat transfer in microchannels with respect to test parameters such as mass flux, heat flux, system pressure, and so on. The existing studies have not been fully satisfactory in providing consistent results about the pressure drop and the heat transfer in microchannels. Therefore, more in-depth studies should be done for understanding the fundamentals of the transport phenomena in the microchannels and giving the basic guidelines to design the micro devices.

Fabrication of Polymeric Microcapsules in a Microchannel using Formation of Double Emulsion (마이크로채널 내 이중유화 액적 형성을 통한 마이크로캡슐 제조)

  • Nam, Jin-Oh;Choi, Chang-Hyung;Kim, Jongmin;Kang, Sung-Min;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.597-601
    • /
    • 2013
  • In this study, we present simple microfluidic approach for the synthesis of monodisperse microcapsules by using droplet-based system. We generate double emulsion through single step in the microfluidic device having single junction while conventional approaches are limited in surface treatment for the generation of double emulsion. First, we have injected disperse fluid containing FC-77 oil and photocurable ethoxylated trimethylolpropane triacrylate (ETPTA) and water containing 3 wt% poly(vinyl alcohol) (PVA) as continuous phase into microfluidic device. Under the condition, we easily generate double emulsion with high monodispersity by using flow focusing. The double emulsion droplets are transformed into microcapsules under the UV irradiation via photopolymerization. In addition, we control thickness of double emulsion's shell by controlling flow rate of ETPTA. We also show that the size of double emulsions can be controlled by manipulation of flow rate of continuous phase. Furthermore, we synthesize microcapsules encapsulating various materials for the application of drug delivery systems.

Experimental Studies on Thermal-Fluidic Characteristics of Carbon Dioxide During Heating Process in the Near-Critical Region for Single Channel (단일채널 내 임계영역 이산화탄소 가열과정의 열유동 특성에 관한 실험적 연구)

  • Choi, Hyunwoo;Shin, Jeong-Heon;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.408-418
    • /
    • 2017
  • Supercritical carbon dioxide ($sCO_2$) power system is emerging technology because of its high cycle efficiency and compactness. Meanwhile, PCHE (Printed Circuit Heat Exchanger) is gaining attention in $sCO_2$ power system technology because PCHE with high pressure-resistance and larger heat transfer surface per unit volume is fundamentally needed. Thermo-fluidic characteristics of $sCO_2$ in the micro channel of PCHE should be investigated. In this study, heat transfer characteristics of $sCO_2$ of various inlet conditions and cross-sectional shapes of single micro channel were investigated experimentally. Experiment was conducted at supercritical state of higher than critical temperature and pressure. Test sections were made of copper and hydraulic diameter was 1 mm. Convective heat transfer coefficients were measured according to each interval of the channel and pressure drop was also measured. Convective heat transfer coefficients from experimental data were compared with existing correlation. In this study, using measured data, a new empirical correlation to predict near critical region heat transfer coefficient is developed and suggested. Test results of single channel will be used for design of PCHE.

Fabrication and Performance Evaluation of the HVM Micromixer using Horizontal and Vertical Multi-mixing (HVM) Flow Motion (상하좌우 복합유동 HVM 마이크로 믹서 제작 및 성능평가)

  • Yoo, Won-Sul;Kim, Seong-Jin;Kang, Seok-Hoon;Lee, Dong-Kyu;Go, Jung-Sang;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.214-221
    • /
    • 2012
  • Recently, the biochip which is a prime representation of NT, IT, BT, as an example of convergence technology, has been frequently mentioned. With the recent rapid advance in biotechnology, these compact devices, such as lab-on-a-chip or u-TAS, have been developed, and more research is needed. These compact devices typically use the micro-channel in order to shed or detach and mix a variety of materials. Specially, in micro-fluidic systems, a mixer is necessary to produce a mixture because only laminar flow occurs at a low-Reynolds number. To solve this problem, HVM a micromixer that induces a horizontal and vertical multi-mixing flow motion, is proposed. The mixing performance was analyzed and verified by optimizing the shape through the CFD analysis and evaluating the structural analysis and the soundness with material properties that are obtained through the basic experiment.

Microbead based micro total analysis system for Hepatitis C detection (마이크로비드를 이용한 초소형 C형 간염 검출 시스템의 제작)

  • Sim, Tae-Seok;Lee, Bo-Rahm;Lee, Sang-Myung;Kim, Min-Soo;Lee, Yoon-Sik;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1629-1630
    • /
    • 2006
  • This paper describes a micro total analysis system ($\mu$ TAS) for detecting and digesting the target protein which includes a bead based temperature controllable microchip and computer based controllers for temperature and valve actuation. We firstly combined the temperature control function with a bead based microchip and realized the on-chip sequential reactions using two kinds of beads. The PEG-grafted bead, on which RNA aptamer was immobilized, was used for capturing and releasing the target protein. The target protein can be chosen by the type of RNA aptamer. In this paper, we used the RNA aptamer of HCV replicase. The trypsin coated bead was used for digesting the released protein prior to the matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI TOF MS). Heat is applied for release of the captured protein binding on the bead, thermal denaturation and trypsin digestion. PDMS microchannel and PDMS micro pneumatic valves were also combined for the small volume liquid handling. The entire procedures for the detection and the digestion of the target protein were successfully carried out on a microchip without any other chemical treatment or off-chip handling using $20\;{\mu}l$ protein mixture within 20 min. We could acquire six matched peaks (7% sequence coverage) of HCV replicase.

  • PDF

Laser micromachining of high-aspect-ratio metallic channels for the application to microthermal devices (마이크로 열소자 제작을 위한 고세장비 금속채널의 레이저 가공)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.437-446
    • /
    • 2006
  • A fabrication method fur high-aspect-ratio microchannels in stainless steel using laser-assisted thermochemical wet etching is reported in this paper. The fabrication of deep microchannels with an aspect ratio over ten is realized by applying a multiple etching process with an optimization of process conditions. The cross-sectional profile of the microchannels can be adjusted between rectangular and triangular shapes by properly controlling laser power and etchant concentration. Excellent dimensional uniformity is achieved among the channels with little heat-affected area. Microchannels with a width ranging from 15 to $50{\mu}m$ can be fabricated with an aspect ratio of ten and a pitch of 150 m or smaller. The effects of process variables such as laser power, scan speed, and etchant concentration on the fabrication results, including etch width, depth, and cross-sectional profile are closely examined.