• 제목/요약/키워드: microbiological corrosion

검색결과 5건 처리시간 0.018초

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.

Biofouling and Microbial Induced Corrosion -A Case Study

  • Mohammed, R.A.;Helal, A.M.;Sabah, N.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.27-34
    • /
    • 2008
  • In industrial and fluid handling systems, frequently the protective film forming materials suffer from severe corrosion due to microbial effects. As an example, various micro-organisms, including bacteria, exist in seawater normally fed to power and desalination plants. Unless seawater intakes are properly disinfected to control these microbial organisms, biological fouling and microbial induced corrosion (MIC) will be developed. This problem could destroy metallic alloys used for plant construction. Seawater intakes of cogeneration plants are usually disinfected by chlorine gas or sodium hypochlorite solution. The dose of disinfectant is designed according to the level of contamination of the open seawater in the vicinity of the plant intake. Higher temperature levels, lower pH, reduced flow velocity and oxidation potential play an important role in the enhancement of microbial induced corrosion and bio-fouling. This paper describes, in brief, the different types of bacteria, mechanisms of microbiological induced corrosion, susceptibility of different metal alloys to MIC and possible solutions for mitigating this problem in industry. A case study is presented for the power plant steam condenser at Al-Taweelah B-station in Abu Dhabi. The study demonstrates resistance of Titanium tubes to MIC.

혐기성 토양에 서식하는 황산염환원세균에 의한 가스배관의 미생물부식 (CORROSION OF STEEL GAS PIPELINE INDUCED BY SULFATE-REDUCING BACTERIA IN ANAEROBIC SOIL)

  • 이선엽;전경수;고영태;강탁
    • 한국가스학회:학술대회논문집
    • /
    • 한국가스학회 2001년도 추계학술발표회 논문집
    • /
    • pp.58-68
    • /
    • 2001
  • Microbiologically influenced corrosion (MIC) of carbon steel gas pipeline in soil environments was investigated at field and laboratory MIC is very severe corrosion and it is not easy to distinguish this corrosion from Inorganic corrosion because of its localized, pitting-type character Therefore, it is important to provide proper assessment techniques for the prediction, detection, monitoring and mitigation of MIC. It is possible to predict the MIC risk, i.e., the activity of sulfate-reducing bacteria (SRB) through the analysis of soil environments. Chemical, microbiological and surface analysis of corrosion products and metal attacked could reveal the possibility of the occurrence of MIC. Various electrochemical and surface analysis techniques could be used for the study of MIC. Among these techniques, thin-film electrical resistance (ER) type sensors are promising to obtain localized corrosion rate of MIC induced by SRB. It is also important to study the effect of cathodic protection (CP) on the MIC In case of coated pipeline, the relationship between coating disbondment and the activity of SRB beneath the disbanded coating is also important.

  • PDF

Novel Biocide Controls Biofilm Formation without Adversely Affecting the Papermaking Process

  • Bharti, Shashank;Kim, Hyung-Ju;Kim, Ik-Dong
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.67-71
    • /
    • 2006
  • Strong oxidizing biocides are commonly used to control biofilm formation in alkaline papermaking systems. However, paper streams contain many substances that react with or consume oxidizers (e.g., fiber and starch, Therefore, to achieve effective microbiological control, the oxidizer must be overfed to overcome the effect of these substances. When dosed in this manner, the oxidizer can cause many unwanted reactions and adverse side effects, including the consumption of costly papermaking additives increased corrosion rates, and reduced felt life. Some oxidizers also contribute to the formation of halogenated organic compounds. When used for biofilm control, strong oxidizers can cause more problems than they remedy. A patented biocide that effectively controls biofilm without the adverse side effects associated with strong oxidizing biocides is available from Hercules. $Spectrum^{(R)}$ XD3899 Ammonium Bromide Technology, which can be described as a mild oxidizer, is currently used on more than 300 machines globally and has resulted in numerous production and/or machine efficiency records since its introduction in 2001.

  • PDF

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor

  • Jang, Hyun-Jung;Choi, Young-June;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.115-123
    • /
    • 2011
  • To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.