• Title/Summary/Keyword: microbial strain

Search Result 626, Processing Time 0.027 seconds

Physiological Characteristics of Biosurfactant-Producting Bacillus subtilis TBM 3101 (Biosurfactant를 생산하는 Bacillus subtilis TBM 3101의 생리학적 특성)

  • Kim, Seon-A;Lee, Young-Guen;Choi, Yong-Lark;Hwang, Cher-Won;Jeong, Yong-Kee;Joo, Woo-Hong
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • A biosurfactant-producing strain, Bacillus subtilis TBM 3101 was isolated from the soil sample at Tae-Baek Mountain through an antifungal test and emulsification assessment. The strain was assessed, regarding to the microbial growth, by physical and chemical test, surface tension, emulsification activity and stability. The surface tension of the isolate sharply decreased to the minimum 29mN/m at 48 h growth. Of note, its emulsification was stabilized to the highest degree when tributyrin was utilized as a substrate, indicating that in comparison to a variety of synthetic surfactants, the biosurfactant produced by the isolate was significantly similar to synthetic surfactant, tween 20. In addition, the biosurfactant showed high emulsification activity when soybean oil, crude oil and tetradecane were used as a substrate. Thus, these studies could contribute to the detection and development of biosurfactant beneficial to the environment and humans.

Isolation of Antagonistic Microorganism for Biological Control to Apple Diseases, Bitter Rot (사과 탄저병 방제를 위한 길항미생물 분리)

  • Cho, Jung-Il;Hahn, Cheol-Joo;Ahn, Pyong-Ryol;Park, Jin-Hyung;Park, Heung-Sub
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.99-106
    • /
    • 1999
  • In order to acquire microbial agents that can be utilized for biological control of bitter rot(Glomerella cingulata), the major airborne disease to apple, the effective microorganisms were isolated, tested for antagonistic activity to the pathogen. Through the screening of more than 1,000 species of microorganisms collected in nature, 11 species of antagonists were selected. On of the 11 species, one species designated as CH141 demonstrated outstanding activity. The bacterial strain, CH1141 exerted antagonistic efficiency of 65% on Glomerella cingulata. The CH1141 was identified as a bacterial strain to Bacillus subtilis based on morphology, culture conditions, and physiobiochemical characteristics.

  • PDF

Bioconversion of Untreated Corn Hull into L-Malic Acid by Trifunctional Xylanolytic Enzyme from Paenibacillus curdlanolyticus B-6 and Acetobacter tropicalis H-1

  • Duong, Thi Bich Huong;Ketbot, Prattana;Phitsuwan, Paripok;Waeonukul, Rattiya;Tachaapaikoon, Chakrit;Kosugi, Akihiko;Ratanakhanokchai, Khanok;Pason, Patthra
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1262-1271
    • /
    • 2021
  • L-Malic acid (L-MA) is widely used in food and non-food products. However, few microorganisms have been able to efficiently produce L-MA from xylose derived from lignocellulosic biomass (LB). The objective of this work is to convert LB into L-MA with the concept of a bioeconomy and environmentally friendly process. The unique trifunctional xylanolytic enzyme, PcAxy43A from Paenibacillus curdlanolyticus B-6, effectively hydrolyzed xylan in untreated LB, especially corn hull to xylose, in one step. Furthermore, the newly isolated, Acetobacter tropicalis strain H1 was able to convert high concentrations of xylose derived from corn hull into L-MA as the main product, which can be easily purified. The strain H1 successfully produced a high L-MA titer of 77.09 g/l, with a yield of 0.77 g/g and a productivity of 0.64 g/l/h from the xylose derived from corn hull. The process presented in this research is an efficient, low-cost and environmentally friendly biological process for the green production of L-MA from LB.

Evaluation of an Appropriate Replacement Cycle for Copper Antibacterial Film to Prevent Secondary Infection

  • Je, Min-A;Park, Heechul;Kim, Junseong;Lee, Eun Ju;Jung, Minju;Kim, Minji;Jeong, Mingyoung;Yun, Jiyun;Sin, Hayeon;Jin, Hyunwoo;Lee, Kyung Eun;Kim, Jungho
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.195-199
    • /
    • 2022
  • The use of copper antibacterial films as an effective infection prevention method is increasing owing to its ability to reduce the risk of pathogen transmission. In this study, we evaluated the bacterial contamination of the antibacterial copper membrane attached to a door handle at a university over time. Six mounting locations with high floating population were selected. In three sites, the door handles with the antibacterial film were exposed, while the remaining three were not attached with the antibacterial films. On days 7 and 14, isolated bacterial strains were inoculated in BHI broth and agar, respectively. Colony-forming units (CFU) were determined after incubation. Strain identification was performed using bacterial 16s rRNA PCR and sequencing. Results showed that the bacterial population on day 14 significantly increased from 6 × 109 CFU/mL (day 7) to 2 × 1010 CFU/mL. Furthermore, strain distribution was not different between the on and off the copper antibacterial film groups. In conclusion, although copper has an antibacterial activity, microbial contamination may occur with prolonged use.

Microbial isolates and antibiotic sensitivity in patients hospitalized with odontogenic infections at a tertiary center over 10 years

  • Gyu-Beom Kwon;Chul-Hwan Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.4
    • /
    • pp.198-207
    • /
    • 2023
  • Objectives: This study investigated causative strains and their antibiotic sensitivity in patients who were hospitalized for maxillofacial odontogenic infections at a tertiary center in South Korea over the past 10 years with the aim of providing guidelines for the selection of appropriate empirical antibiotics. Materials and Methods: Patients with head and neck fascial space abscesses due to odontogenic infections who underwent incision and drainage surgery with pus culture tests between 2013 and 2022 at the Department of Oral and Maxillofacial Surgery, Dankook University Hospital were included. The bacterial isolates and antibiotic sensitivity of each strain were analyzed for 2013-2022, 2013-2017, and 2018-2022. The affected fascial spaces were classified into primary, secondary, and deep neck spaces. Results: In the 192 patients included in this study, 302 strains were detected. Viridans streptococcus had the highest frequency (51.7%), followed by Prevotella spp. (16.9%), Staphylococcus spp. (5.6%), and Klebsiella pneumoniae (4.6%). The identification rate of viridans streptococcus significantly increased from 41.8% in 2013-2017 to 60.9% in 2018-2022. Viridans streptococcus showed an antibiotic sensitivity of 80.5% to ampicillin; the sensitivity to penicillin antibiotics decreased over the study period. Antibiotic susceptibility was approximately 94% for third-generation cephalosporins. K. pneumoniae, which was identified at a high percentage in patients with deep neck space infection, showed increasing antibiotic resistance to most antibiotics over the study period. Conclusion: Viridans streptococcus was identified in head and neck fascial space abscesses with the highest frequency. Empirical antibiotics should be effective against this strain; penicillin antibiotics are considered inappropriate. For effective treatment of deep neck space abscesses, bacterial culture and antibiotic sensitivity tests performed as soon as possible are essential.

Profiling of endogenous metabolites and changes in intestinal microbiota distribution after GEN-001 (Lactococcus lactis) administration

  • Min-Gul Kim;Suin Kim;Ji-Young Jeon;Seol Ju Moon;Yong-Geun Kwak;Joo Young Na;SeungHwan Lee;Kyung-Mi Park;Hyo-Jin Kim;Sang-Min Lee;Seo-Yeon Choi;Kwang-Hee Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.153-164
    • /
    • 2024
  • This study aimed to identify metabolic biomarkers and investigate changes in intestinal microbiota in the feces of healthy participants following administration of Lactococcus lactis GEN-001. GEN-001 is a single-strain L. lactis strain isolated from the gut of a healthy human volunteer. The study was conducted as a parallel, randomized, phase 1, open design trial. Twenty healthy Korean males were divided into five groups according to the GEN-001 dosage and dietary control. Groups A, B, C, and D1 received 1, 3, 6, and 9 GEN-001 capsules (1 × 1011 colony forming units), respectively, without dietary adjustment, whereas group D2 received 9 GEN-001 capsules with dietary adjustment. All groups received a single dose. Fecal samples were collected 2 days before GEN-001 administration to 7 days after for untargeted metabolomics and gut microbial metagenomic analyses; blood samples were collected simultaneously for immunogenicity analysis. Levels of phenylalanine, tyrosine, cholic acid, deoxycholic acid, and tryptophan were significantly increased at 5-6 days after GEN-001 administration when compared with predose levels. Compared with predose, the relative abundance (%) of Parabacteroides and Alistipes significantly decreased, whereas that of Lactobacillus and Lactococcus increased; Lactobacillus and tryptophan levels were negatively correlated. A single administration of GEN-001 shifted the gut microbiota in healthy volunteers to a more balanced state as evidenced by an increased abundance of beneficial bacteria, including Lactobacillus, and higher levels of the metabolites that have immunogenic properties.

Biosynthesis of Rhamnosylated Anthraquinones in Escherichia coli

  • Nguyen, Trang Thi Huyen;Shin, Hee Jeong;Pandey, Ramesh Prasad;Jung, Hye Jin;Liou, Kwangkyoung;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.398-403
    • /
    • 2020
  • Rhamnose is a naturally occurring deoxysugar present as a glycogenic component of plant and microbial natural products. A recombinant mutant Escherichia coli strain was developed by overexpressing genes involved in the TDP-ʟ-rhamnose biosynthesis pathway of different bacterial strains and Saccharothrix espanaensis rhamnosyl transferase to conjugate intrinsic cytosolic TDP-ʟ-rhamnose with anthraquinones supplemented exogenously. Among the five anthraquinones (alizarin, emodin, chrysazin, anthrarufin, and quinizarin) tested, quinizarin was biotransformed into a rhamoside derivative with the highest conversion ratio by whole cells of engineered E. coli. The quinizarin glycoside was identified by various chromatographic and spectroscopic analyses. The anti-proliferative property of the newly synthesized rhamnoside, quinizarin-4-O-α-ʟ-rhamnoside, was assayed in various cancer cells.

The Physicochemical Stabilities and Antimicrobial Activities of Pigment Extracts from Zooshikella sp. 17TA (Zooshikella sp. 17TA 색소 추출물의 물리화학적 안정성과 항균활성)

  • Park, Jae-Myeong;Park, Jin-Sook
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.89-93
    • /
    • 2019
  • In this study, the stability of the extracted natural pigments against light, temperature, pH, metal ions, and antimicrobial activity were evaluated in marine bacteria Zooshikella sp. 17TA. The pigment of the strain used in the study was red with maximum absorption at a wavelength of 541 nm. The stability of the pigment was evaluated by measuring the absorbance while preserving for 15 days and examining the retention rate. After 15 days of irradiation, the pigment of this bacterium showed 98% retention in the dark and 91% retention in the temperature range of -20℃ ~ 30℃. When the pH was in the range 4-7, the retention was about 80%, and the retention rate was higher than 85% for all kinds of metal ions except for CuCl2, ZnCl2, and KCl. The bacterial pigments showed high stability under the given irradiated pH, temperature, and metal ion conditions and had shown activity against gram-positive strains. These results suggest that this highly conserved microbial pigment can be applied to the food industry.

Clinical Evaluation for the Bronchiectasis (기관지확장증의 임상적 고찰)

  • Jeong, Seong-Un;Jeong, Hwang-Gyu
    • Journal of Chest Surgery
    • /
    • v.28 no.11
    • /
    • pp.1007-1013
    • /
    • 1995
  • We managed 80 patients of bronchiectasis from Jan.1983 to Dec.1992 admitted to the department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital. We evaluated clinically these patients and summarized as follows. Alpha-hemolytic streptococcus was the most commonly found bacterial strain in microbial study. For the conservative treatment, first generation cefalosporins, aminoglycosides and ampicillin were used as antibiotic therapy in this order of frequency. The preoperative final diagnosis was made by bronchography and HRCT. In the image study saccular type bronchiectasis was 47.1%, cylindrical 27.5%, mixed 17.6% and varicose 7.8%. Anatomically left side involvement was more frequent than the right as 61.2% to 38.8% and the most commonly invading lobar area was left lower. Reversibility after conservative treatment for all the types of bronchiectasis was 66%. Surgical treatment were done in 50 cases, among these left lower lobectomy was 38.0%, left lower lobectomy with ligular segmentectomy 22.0%, right middle and lower bilobectomy 16.0%, right lower lobectomy 10.0%, left pneumonectomy 10.0%, right pneumonectomy 4.0%. In 10 cases, there remained some lesion in the other sites of lung parenchyme after first attempt surgical resection because the distribution of lesion is too broad to resect out in single thoracotomy hoping improvement by medical management.

  • PDF

Screening and Identification of an Antifungal Pseudomonas sp. That Suppresses Balloon Flower Root Rot Caused by Rhizoctonia solani

  • Ryu, Jae-San;Lee, Sang-Dae;Lee, Young-Han;Lee, Seong-Tae;Kim, Dong-Kil;Cho, Soo-Jeong;Park, Sang-Ryeol;Bae, Dong-Won;Park, Ki-Hun;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.435-440
    • /
    • 2000
  • A pathogenic fungus causing balloon flower root rot (Platycodon grandiflorum) was isolated from naturally infected roots. The microbial characteristics of the isolated microorganism were similar to those of Rhizoctonia solani. About 500 bacterial species from field soils were screened for a biological agent against the above-mentioned putative pathogen, and several bacteria with the antifungal activity were isolated. Among them, the isolated JS2 was identified as Pseudomonas aeruginosa. This strain showed a broad spectrum of antifungal activity potentially. When the antifungal substance was purified from a broth culture of JS2, it was identified as 2,4-diacetylphloroglucinol (Phl).

  • PDF