• Title/Summary/Keyword: microbial strain

Search Result 626, Processing Time 0.019 seconds

Genome-wide Analysis and Control of Microbial Hosts for a High-level Production of Therapeutic Proteins

  • Kim, Sung-Geun;Park, Jung-Hwan;Lee, Tae-Hee;Kim, Myung-Dong;Seo, Jin-Ho;Lim, Hyung-Kwon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.230-232
    • /
    • 2005
  • The formation of insoluble aggregation of the recombinant kringle fragment of human apolipoprotein(a), rhLK8, in endoplasmic reticulum was identified as the rate-limiting step in the rhLK8 secretion in Saccharomyces cerevisiae. To analyze the protein secretion pathway, some of yeast genes closely related to protein secretion was rationally selected and their oligomer DNA were arrayed on the chip. The expression profiling of these genes during the induction of rhLK8 in fermentor fed-batch cultures revealed that several foldases including pdi1 gene were up-regulated in the early induction phase, whereas protein transport-related genes were up-regulated in the late induction phase. The coexpression of pdi1 gene increased rhLK8-folding capacity. Hence, the secretion efficiency of rhLK8 in the strain overexpressing pdi1 gene increased by 2-fold comparing in its parental strain. The oligomer DNA chip arrayed with minimum number of the genes selected in this study could be generally applicable to the monitoring system for the heterologous protein secretion and expression in Saccharomyces cerevisiae. With the optimization of fed-batch culture conditions and the alteration of genetic background of host, we obtained extracellular rhLK8 at higher yields than with Pichia pastoris systems, which was a 25-fold increased secretion level of rhLK8 compared to the secretion level at the initiation of this study.

  • PDF

Isolation and Characterization of Siderophore-Producing Bacteria with Various Plant Growth-Promoting Abilities as a Potential Biocontrol Agent (잠재적 미생물 농약으로서 다양한 식물성장 촉진 활성을 가진 siderophore 생산 세균의 분리와 특성)

  • Choi, Seunghoon;Yoo, Ji-Yeon;Park, SungJin;Park, MinJoo;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.925-933
    • /
    • 2020
  • To develop eco-friendly microbial inoculants, siderophore-producing bacteria were isolated and identified, and their production characteristics and plant growth-promoting abilities were investigated. A strain S21 was isolated from rhizosphere of Korean perilla (Perilla frutescens) and identified as Enterobacter amnigenus by phenotypic properties and 16S rRNA gene sequencing. The highest siderophore production was obtained in a medium containing 0.5% fructose, 0.1% urea, 0.5% K2HPO4 and 0.1% succinic acid. By using this improved medium, siderophore production increased by 2.5 times compared to that of basal medium. The strain S21 showed insoluble phosphate solubilizing, ammonification and antifungal activities, and also produced hydrolytic enzymes (protease and lipase), indoleacetic acid and 1-aminocyclopropane-1-carboxylate deaminase. Our data suggest that E. amnigenus S21 is a potential candidate that can be used as eco-friendly biocontrol agent and biofertilizer.

Decrease efficiency of Offensive Odor from Pig Excreta by Yeast Strain, Pichia farinosa NASS-2 Isolated from Soy Bean Paste (된장에서 분리한 효모(Pichia farinosa NASS-2)의 돈분 악취감소효과)

  • Yoo, Jae Hong;Park, In Cheol;Kim, Wan Gyu
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.254-257
    • /
    • 2012
  • The different microbial species were isolated from soy bean paste samples. A yeast strain NASS-2 was effective to decrease odor activity on pig excreata was identified as Pichia farinosa based on nucleotide sequences of 18S ribosomal DNA and Internal transcribed space (ITS). The extracellular fraction of P. farinosa NASS-2 was effective to decrease odor activity of pig excrements. Optimal medium component for decreasing order activity on odor material composed of soluble starch 2.0% (w/v) and yeast extract 0.8% (v/v). The decrease of odor material was maximum at $28^{\circ}C$ for 72 hours with pH 5.5. When the P. farinosa NASS-2 culture broth was treated to pig excrements, the removal efficiency was an average concentration with 1.38 ppm of ammonia gas.

Isolation and Identification of ${\gamma}$-Cyclodextrin Glycosyltransferase-Producing Bacteria, and Its Production Conditions (${\gamma}-Cyclodextrin$ Glycosyltransferase 생산균주의 분리, 동정 및 효소 생산조건)

  • Kim, Myung-Hee;Lim, Young-Hee;Bae, Kyung-Sook;Oh, Tae-Kwang;Sohn, Cheon-Bae
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.459-464
    • /
    • 1997
  • A cyclodextrin glycosyltransferase-producing bacterium was newly isolated from soil using alkaline pH medium containing 1% $Na_2CO_3$. The isolated strain was identified as Bacillus brevis by morphological and biochemical characteristics, and fatty acid composition and designated Bacillus brevis CD162. The strain showed the best enzyme production of 0.9 unit/ml after 96 hrs of culture at $30^{\circ}C$ in a medium of 2.0% soluble starch, 0.75% yeast extract, 0.5% bacto peptone, 0.2% $K_2HPO_4$ 0.05% $MgSO_4{\cdot}7H_2O$, and 1.5% $Na_2CO_3$ at initial pH 10.2.

  • PDF

AB3217-A and B, herbicidal compounds related to anisomycin from Streptomyces sp. ME-13 (Streptomyces sp. ME-13 균주가 생산하는 anisomycin계 AB3217 화합물의 제초활성)

  • Kim, Won-Kon;Kim, Jong-Pyung;Park, Dong-Jin;Kim, Chang-Jin;Kwak, Sang-Soo;Yoo, Ick-Dong
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.153-158
    • /
    • 1996
  • During the screening of herbicidal substances from microbial secondary metabolites using photoautotrophic cells, a strain of ME-13 with strong herbicidal activity was isolated from soil. Based on the taxonomic studies, the strain was identified as Streptomyces. Two active compounds were purified from the culture broth through the column chromatographies using active charcoal, silica gel, MCI gel, and ODS HPLC. The compounds were identified as AB3217-A and B, respectively, related to anisomycin by spectroscopic methods. AB3217-A and B completely suppressed the germination of radish and barnyard grass at 25 ppm. In comparison to anisomycin, they showed the 6 times higher inhibitory activities against the growth of shoot and root of radish and barnyard grass with EC5O of around 6 ppm.

  • PDF

Pyridoxatin, an Inhibitor of Gelatinase A with Cytotoxic Activity

  • Lee, Ho-Jae;Chung, Myung-Chul;Lee, Choong-Hwan;Chun, Hyo-Kon;Kim, Hwan-Mook;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.445-450
    • /
    • 1996
  • Gelatinase A is a member of the matrix metalloproteinases that play an important role in cancer invasion and metastasis. In the course of screening gelatinase A inhibitors from microbial sources, a fungal strain PT-262 showed a strong inhibitory activity. The strain was identified as Chaunopycnis alba on the basis of its morphological characteristics. The inhibitor was isolated from acetone extract of mycelial cake by sequential chromatographies on MCI-gel, Sephadex LH-20, and a reverse-phase HPLC column. The purified inhibitor was identified as pyridoxatin by its physico-chemical properties and spectroscopic analysis. Pyridoxatin is not a peptide analog and has cyclic hydroxamic acid moiety. It inhibited activated gelatinase A with an $IC_{50}$ value of 15.2 ${\mu}M$ using fluorescent synthetic peptide. It also had a strong cytotoxicity against human cancer cell lines in vitro. Furthermore, this compound inhibited DNA synthesis with an $IC_{50}$ value of 2.92 ${\mu}M$ in PC-3 prostate cancer cells by [$^3H$]thymidine incorporation assay.

  • PDF

Characterization of a Soil Metagenome-Derived Gene Encoding Wax Ester Synthase

  • Kim, Nam Hee;Park, Ji-Hye;Chung, Eunsook;So, Hyun-Ah;Lee, Myung Hwan;Kim, Jin-Cheol;Hwang, Eul Chul;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.248-254
    • /
    • 2016
  • A soil metagenome contains the genomes of all microbes included in a soil sample, including those that cannot be cultured. In this study, soil metagenome libraries were searched for microbial genes exhibiting lipolytic activity and those involved in potential lipid metabolism that could yield valuable products in microorganisms. One of the subclones derived from the original fosmid clone, pELP120, was selected for further analysis. A subclone spanning a 3.3 kb DNA fragment was found to encode for lipase/esterase and contained an additional partial open reading frame encoding a wax ester synthase (WES) motif. Consequently, both pELP120 and the full length of the gene potentially encoding WES were sequenced. To determine if the wes gene encoded a functioning WES protein that produced wax esters, gas chromatography-mass spectroscopy was conducted using ethyl acetate extract from an Escherichia coli strain that expressed the wes gene and was grown with hexadecanol. The ethyl acetate extract from this E. coli strain did indeed produce wax ester compounds of various carbon-chain lengths. DNA sequence analysis of the full-length gene revealed that the gene cluster may be derived from a member of Proteobacteria, whereas the clone does not contain any clear phylogenetic markers. These results suggest that the wes gene discovered in this study encodes a functional protein in E. coli and produces wax esters through a heterologous expression system.

Optimization of Tannase Production by Aspergillus niger in Solid-State Packed-Bed Bioreactor

  • Rodriguez-Duran, Luis V.;Contreras-Esquivel, Juan C.;Rodriguez, Raul;Prado-Barragan, L. Arely;Aguilar, Cristobal N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.960-967
    • /
    • 2011
  • Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett-Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature ($30^{\circ}C$), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.

A Two-Strain Mixture of Rhizobacteria Elicits Induction of Systemic Resistance Against Pseudomonas syringae and Cucumber Mosaic Virus Coupled to Promotion of Plant Growth on Arabidopsis thaliana

  • Ryu Choong-Min;Murphy John F.;Reddy M.S.;Kloepper Joseph W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.280-286
    • /
    • 2007
  • We evaluated a commercial biopreparation of plant growth-promoting rhizobacteria (PGPR) strains Bacillus subtilis GB03 and B. amyloliquefaciens IN937a formulated with the carrier chitosan (Bio Yield) for its capacity to elicit growth promotion and induced systemic resistance against infection by Cucumber Mosaic Virus (CMV) and Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. The biopreparation promoted plant growth of Arabidopsis hormonal mutants, which included auxin, gibberellic acid, ethylene, jasmonate, salicylic acid, and brassinosteroid insensitive lines as well as each wild-type. The biopreparation protected plants against CMV based on disease severity in wild-type plants. However, virus titre was not lower in control plants and those treated with biopreparation, suggesting that the biopreparation induced tolerance rather than resistance against CMV. Interestingly, the biopreparation induced resistance against CMV in NahG plants, as evidenced by both reduced disease severity and virus titer. The biopreparation also elicited induced resistance against P. syringae pv. tomato in the wild-type but not in NahG transgenic plants, which degrade endogenous salicylic acid, indicating the involvement of salicylic acid signaling. Our results indicate that some PGPR strains can elicit plant growth promotion by mechanisms that are different from known hormonal signaling pathways. In addition, the mechanism for elicitation of induced resistance by PGPR may be pathogen-dependent. Collectively, the two-Bacilli strain mixture can be utilized as a biological inoculant for both protection of plant against bacterial and viral pathogens and enhancement of plant growth.

A Human Fungal Pathogen Cryptococcus neoformans Expresses Three Distinct Iron Permease Homologs

  • Han, Kyunghwan;Do, Eunsoo;Jung, Won Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1644-1652
    • /
    • 2012
  • Iron plays a key role in host-pathogen interactions. Microbial pathogens require iron for survival and virulence, whereas mammalian hosts sequester and withhold iron as a means of nutritional immunity. We previously identified two paralogous genes, CFT1 and CFT2, which encode homologs of a fungal iron permease, Cft1 and Cft2, respectively, in the human fungal pathogen Cryptococcus neoformans. Cft1 was shown to play a role in the high-affinity reductive iron uptake system, and was required for transferrin utilization and full virulence in mammalian hosts. However, no role of Cft2 has been suggested yet. Here, we identified the third gene, CFT3, that produces an additional fungal iron permease homolog in C. neoformans, and we also generated the cft3 mutant for functional characterization. We aimed to reveal distinct functions of Cft1, Cft2 and Cft3 by analyzing phenotypes of the mutants lacking CFT1, CFT2 and CFT3, respectively. The endogenous promoter of CFT1, CFT2 and CFT3 was replaced with the inducible GAL7 promoter in the wild-type strain or in the cft1 mutant for gain-of-function analysis. Using these strains, we were able to find that CFT2 is required for growth in low-iron conditions in the absence of CFT1 and that overexpression of CFT2 compensates for deficiency of the cft1 mutant in iron uptake and various cellular stress conditions. However, unlike CFT2, no clear phenotypic characteristic of the cft3 mutant and the strain overexpressing CFT3 was observed. Overall, our data suggested a redundant role of Cft2 in the high-affinity iron uptake and stress responses in C. neoformans.