• Title/Summary/Keyword: microbial respiration

Search Result 94, Processing Time 0.024 seconds

Assessment of Microbial Decomposition in Soil Organic Matter Accumulation with Depth in Golf Greens (골프장 그린에서 토심별 토양 유기물 집적에 대한 미생물 분해성 평가)

  • Huh, Keun-Young;Kim, In-Hea;Deurer, Markus
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.4
    • /
    • pp.64-71
    • /
    • 2009
  • Excessive soil organic matter (SOM) is detrimental to turfgrass quality when used intensively in sand-based root zones, thereby affecting the sustainability of turfgrass systems. As part of a major project examining the sustainable management of SOM on golf greens, microbial decomposition on soil organic matter accumulation with depth was assessed and the effect of soil air-condition improvement and Ca fertilization was investigated by soil microbial respiration (SMR). Three soil samples from three depths(0~5, 5~10, and 10~15cm) of 5 year and 30 year old green were analyzed for SOM content. In 30 year old green, SMR and dehydrogenase activity(DHA) were analyzed to assess the soil microbial decomposition with depth. It was then divided into 4 plots: untreated as a control, dolomite-treated, 0~5cm deep section-removed, and 0~5 cm deep section-removed+dolomite-treated. After treatment, three soil samples were taken at 1, 2 and 4 weeks by the above-mentioned method, and analyzed for SMR to better understand SOM decomposition. SOM accumulation in the 0~5cm depth of golf greens can be controlled by intensive cultivation such as coring, but below 5cm is more difficult as the results showed that SOM content below 5cm increased over time. Soil microbial decomposition of organic matter will be necessary to reduce SOM accumulation, but SMR below 5cm was low and wasn't significantly altered by increasing exposure to air and fertilizing with Ca. As a result, aeration treatments such as coring and Ca fertilization might not be effective at improving soil microbial decomposition below 5cm depth in aged greens.

Influence of Soil Pollutants and Fertilizers on Degradation Rate of Herbicide Alachlor in Soil (토양(土壤)중 제초제(除草劑) alachlor 분해(分解)에 미치는 토양(土壤) 오염(汚染) 물질(物質)과 비료(肥料) 성분(成分)의 영향(影響))

  • Kim, Young-Seok;Kim, Yong-Hwi;Moon, Young-Hee
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.214-219
    • /
    • 1997
  • The influence of manure, chemical fertilizers, heavy metals and cleaner on the rate of degradation of alachlor in soil was studied. The degradation rate of alachlor in the soil followed first-order reaction kinetics. The half-life was 6.4 days. The degradation was accelerated by the amendment of manure. Adding chemical fertilizers to the soil enhanced alachlor degradation more in the presence of nitrogen than potassium. On the other hand, adding heavy metals or cleaner to the soil decreased the degradation rate. The half-life of alachlor in soil treated with Cd, Cr, Ni, Zn and Cu was 11.0, 8.3, 7.9, 7.2 and 6.7 days, respectively, and that of the cleaner is 7.5 days. The microbial biomass and the respiration rate in the soil were promoted by the amendment of manure and chemical fertilizers, and inhibited by the addition of heavy metals and cleaner. The degradation rate correlate positively with the microbial biomass and the respiration rate.

  • PDF

Changes of Postharvest Quality and Microbial Population in Jujube-Shaped Cherry Tomato (Lycopersicon esculentum L.) by Stem Maintenance or Removal (수확 후 꼭지 유지, 제거에 따른 대추형 방울토마토의 품질 및 미생물 변화)

  • Choi, Ji Weon;Lee, Woo Moon;Do, Kyung Ran;Cho, Mi Ae;Kim, Chang Kug;Park, Me Hea;Kim, Ji Gang
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.30-36
    • /
    • 2013
  • Red-ripe 'Betatiny' jujube-shaped cherry tomato fruits via stem maintenance or stem removal were stored at $20^{\circ}C$ for 12 days. Their quality and microbial safety parameters like their respiration rate, weight loss, soluble solids content (SSC), titratable acidity (TA), firmness, hue value, aerobic microflora, coliform, yeast and mold count, and decay were evaluated during their storage. The jujube-shaped cherry tomato fruits whose stems were removed lost less weight than the fruits whose stems were maintained during their 12 days of storage. The stem removal lowered the respiration more significantly than the stem maintenance, and the formation of novel tissues at the stem scar that resulted from the stem removal was observed morphologically. The SSC, TA and hue value of the skin color decreased after eight storage days, but showed no difference between the stem maintenance and removal. The stem had higher microbial counts like aerobic microflora, coliform, and yeast and mold counts. The stem maintenance showed a short shelf-life because molds grew on the attached stem after five storage days. The shelf-life of the jujube-shaped cherry tomato fruits whose stems were removed was about eight days, but that of the fruits whose stems were maintained and that were stored at $20^{\circ}C$ was only about six days.

Studies on Constituents of the Higher Fungi of Korea(LIV) -Studies on Toxic Component of Auricularia polytricha- (한국산(韓國産) 고등균류(高等菌類)의 성분연구(成分硏究)(제54보)(第54報) -털목이의 독성(毒性) 성분(成分)에 관한 연구(硏究)-)

  • Kim, Ha-Won;Choi, Eung-Chil;Kim, Byong-Kak
    • The Korean Journal of Mycology
    • /
    • v.14 no.4
    • /
    • pp.265-271
    • /
    • 1986
  • To screen biologically active components of the higher fungi of Korea, the dried carpophores of Auricularia polytricha were extracted with water. The extract was examined for acute toxicity in ICR mice. A low molecular weight toxin of this fungus was purified by a acetone precipitation followed by cellulose, silica gel and Sephadex LH-20 column chromatography. Major symptoms of this toxin were decreasing of normal motility, eye extrusion, hair erection, shivering, trembling of head, paralysis, rapid running or moving before death and depression of respiration. The median lethal doses of the total extract were 1. 28 g/kg and 4. 31 g/kg by i.p. and p.o. administrations, respectively. The amounts of one mouse lethal unit of the total extract and final fraction that killed a 20 g mouse within 30 minutes were 28.5 and 12.0 mg/mouse, respectively.

  • PDF

Influence of Iron Phases on Microbial U(VI) Reduction

  • Lee, Seung-Yeop;Baik, Min-Hoon;Lee, Min-Hee;Lee, Young-Boo;Lee, Yong-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.58-65
    • /
    • 2011
  • The bacterial uranium(VI) reduction and its resultant low solubility make this process an attractive option for removing U from groundwater. An impact of aqueous suspending iron phase, which is redox sensitive and ubiquitous in subsurface groundwater, on the U(VI) bioreduction by Shewanella putrefaciens CN32 was investigated. In our batch experiment, the U(VI) concentration ($5{\times}10^5M$) gradually decreased to a non-detectable level during the microbial respiration. However, when Fe(III) phase was suspended in solution, bioreduction of U(VI) was significantly suppressed due to a preferred reduction of Fe(III) instead of U(VI). This shows that the suspending amorphous Fe(III) phase can be a strong inhibitor to the U(VI) bioreduction. On the contrary, when iron was present as a soluble Fe(II) in the solution, the U(VI) removal was largely enhanced. The microbially-catalyzed U(VI) reduction resulted in an accumulation of solid-type U particles in and around the cells. Electron elemental investigations for the precipitates show that some background cations such as Ca and P were favorably coprecipitated with U. This implies that aqueous U tends to be stabilized by complexing with Ca or P ions, which easily diffuse and coprecipitate with U in and around the microbial cell.

Valuation of Molecular Weight Distribution Charteristics of Soluble Microbial Products(SMP) Using the Batch Filtration Test (회분여과 방식을 통한 생물대사산물의 분자량 분포 특성 평가)

  • 정태영;차기철;이영무;한상국
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • The formation of soluble microbial products(SMP) and molecular weight distribution on loading rate were observed in batch-type culture medium, which phenol was fed as a substrate. The molecular weight destribution was obtained by using 30K, 100K dalton and $0.45{\mu}$ membrane filters. When the phenol concentrationas a substrate was 120, 230 and 440 mg/L , the specific substrate utilization rate(q) showed 0.639, 1.281 and 1.744 mgTOC/mgMLSS/day, respectively. The endogenous biomass decay rate constant($K_d$) at each substrate concentration was 0.00536, 0.0661 and 0.0749($day^1$), respectively. The $SMP_e$ product rate constant($k_{SMP}_ e$) showed 0.006, 0.0058 and 0.0057($day^1$), respectively. The initial influent substrate during the course of time degraded and produced $SMP_s$. The $SMP_s$ was converted to the $SMP_{nd}$ and endogenous phase converted to the $SMP_e$ ingredients. The molecula weight distribution on loading rate was converted to a higher MW during the course of time.

Impacts of Different Organic Fertilizers on Soil Fertility and Soil Respiration for a Corn (Zea mays L.) Cropping System (옥수수 밭에서 유기질 비료가 토양 비옥도 및 토양 호흡에 미치는 영향)

  • Mavis, Brempong Badu;Hwang, Hyun Young;Lee, Sang Min;Lee, Cho Rong;An, Nan Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.151-163
    • /
    • 2022
  • This study was conducted to promote organic fertilizer(s) that sustain soil productivity for corn production and protect the environment as required by the Act on the promotion of eco-friendly agriculture. It was conducted at the research station of the Organic Agriculture Division of the National Institute of Agricultural. The treatments consisted of Compost (Com), Bokashi as fermented organic fertilizer (FOF), and mixed expeller pressed cake (PC). They were applied at 174 kg N /ha to field corn, together with a 'no fertilizer' check in Randomized Complete Block Design. At eight weeks after transplanting (WAT) corn, compost increased soil carbon (C) and nitrogen (N) to 7.48 and 0.76 g/kg respectively, while other fertilizers maintained the initial levels (before treatment application). At corn harvest (13 WAT), soil chemical properties (total C, total N, pH, electrical conductivity, P2O5, Ca, K, and Mg) were similar among all organic fertilizer treatments. For soil respiration, FOF increased soil CO2 respiration by 31-76% above other fertilizer treatments. However, there were no prominent changes in the trends of CH4 fluxes following the two mechanical weeding operations. Fermented organic fertilizer affected N2O emissions between 87-96% lower than other fertilizer treatments. Compared to the initial microbial densities, FOF increased fungi and actinomycete colony foming unit by 25 and 16% at harvest. Therefore, the additional potential of improving soil biological fertility and local availability of raw materials make FOF a better option to sustain soil productivity while protecting the environment.

Effect of 1-methylcyclopropene Treatment on Extension of Freshness and Storage Potential of Fresh Ginseng (1-methylcyclopropene 처리의 수삼의 신선도 유지 및 저장성 연장 효과)

  • Park, Me-Hea;Shin, Yu-Su;Kim, Sun-Ju;Kim, Ji-Gang
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.308-316
    • /
    • 2013
  • Fresh ginseng has a limited storage life due to the quality change caused by microbial spoilage as well as physiological deterioration. The present study investigated the effects of 1-methylcyclopropene (1-MCP) treatment, an inhibitor of ethylene action, on the microbial growth and quality maintenance of fresh ginseng during storage. Harvested fresh ginsengs were treated with $1{\mu}L{\cdot}L^{-1}$ 1-MCP for 20 hours at $4^{\circ}C$ and then stored at room temperature (RT) for 18 days or low temperature ($4^{\circ}C$) for 160 days. After 18 days of storage at RT, the percentage weight loss in 1-MCP treated fresh ginseng (8.3%) is lower than that of control (10.1%). During long-term storage at $4^{\circ}C$, weight losses were increased slightly until 120 days without difference between non-treated and 1-MCP ginsengs. In contrast, after 120 days of storage at $4^{\circ}C$, higher increase in weight loss was observed in non-treated ginsengs than in 1-MCP treated ginsengs. Respiration rate and ethylene production of fresh ginseng were reduced by 1-MCP treatments at RT. The 1-MCP treatment also resulted in lower microbial population compared to those of non-treated ginsengs at RT. However, in ginsengs stored at $4^{\circ}C$ for short-term (45 days), no differences were noted in weight loss and microbial population between 1-MCP treated and non-treated ginsengs. Major ginsenosides was not changed by 1-MCP treatment during the 7 days of storage at RT. Results suggest that 1-MCP treatment can be used to maintain the freshness of ginseng at room temperature for short term storage and at low temperature for long term storage. 1-MCP treatment could be applied on fresh ginseng to avoid deleterious effect of exogenous ethylene during storage and shipping.

Identification of the Vibrio vulnificus fexA Gene and Evaluation of its Influence on Virulence

  • JU HYUN-MOK;HWANG IN-GYUN;WOO GUN-JO;KIM TAE SUNG;CHOI SANG HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1337-1345
    • /
    • 2005
  • Vibrio vulnificus is the causative agent of foodborne diseases such as gastroenteritis and life-threatening septicemia. Microbial pathogenicity is a complex phenomenon in which expression of numerous virulence factors is frequently controlled by a common regulatory system. In the present study, a mutant exhibiting decreased cytotoxic activity toward intestinal epithelial cells was screened from a library of V. vulnificus mutants constructed by a random transposon mutagenesis. By a transposon-tagging method, an open reading frame, fexA, a homologue of Escherichia coli areA, was identified and cloned. The nucleotide and deduced amino acid sequences of the fexA were analyzed, and the amino acid sequence of FexA from V. vulnificus was $84\%\;to\;97\%$ similar to those of AreA, an aerobic respiration control global regulator, from other Enterobacteriaceae. Functions of the FexA were assessed by the construction of an isogenic mutant, whose fexA gene was inactivated by allelic exchanges, and by evaluating its phenotype changes in vitro and in mice. The disruption of fexA resulted in a significant alteration in growth rate under aerobic as well as anaerobic conditions. When compared to the wild-type, the fexA mutant exhibited a substantial decrease in motility and cytotoxicity toward intestinal epithelial cell lines in vitro. Furthermore, the intraperitoneal $LD_{50}$ of the fexA mutant was approximately $10^{1}-10^{2}$ times higher than that of parental wild-type. Therefore, it appears that FexA is a novel global regulator controlling numerous genes and contributing to the pathogenesis as well as growth of V. vulnificus.

Biochemical Changes Induced due to Staphylococcal Infection in Spongy Alphonso Mango(Mangifera indica L.) Fruits

  • Janave, Machhindra Tukaram
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.167-174
    • /
    • 2007
  • Spongy Alphonso mangoes were found to be infected with Staphylococcus bacteria. A Gram positive Staphylococcus strain was isolated from spongy pulp and identified from CABI Bioscience, UK, by partial 16S rDNA sequence analysis and by morphological and biochemical characterization through IMTECH, Chandigarh, India. Although identification by both of these methods indicated the organism belonged to same genus, different species names were given. Changes in total phenolics, reducing, and non-reducing sugars, respiration rate, total carotenoids, peroxidase(POX), and catalase activities were monitored during ripening of these fruits. The climacteric rise in spongy fruits was marked by an increase in respiration rate and a decrease in sugar content. Total phenolics content increased in spongy fruits as compared to ripe non-spongy fruits. Development of corky white tissue in spongy fruits was associated with about a 2.5-fold reduction in total carotenoids and a concomitant increase in lipoxygenase-mediated, $\beta$-carotene co-oxidation. A marked decrease in soluble protein content and about a 1.5-fold increase in POX activity was observed. Maximum POX activity was confined to 50-70%$(NH_4)_2SO_4$ fraction. The intense dark bands visible after POX specific substrate staining of the Native gel indicated a high expression of isoenzymes of POX in spongy fruits. Similarly, changes in levels of catalase activity were also observed in spongy fruits. The results suggest that infection of Alphonso mangoes with Staphylococcus bacteria affects the normal ripening processes of the fruit interfering with the carbohydrate and carotenoid metabolism. Also, the studies indicate the expression of POX and catalase enzymes as a plant defense response to microbial invasion.

  • PDF