• Title/Summary/Keyword: microbial growth model

Search Result 85, Processing Time 0.033 seconds

Modeling the growth of Listeria monocytogenes during refrigerated storage of un-packaging mixed press ham at household

  • Lee, Seong-Jun;Park, Myoung-Su;Bahk, Gyung-Jin
    • Journal of Preventive Veterinary Medicine
    • /
    • v.42 no.4
    • /
    • pp.143-147
    • /
    • 2018
  • The present study aimed to develop growth prediction models of Listeria monocytogenes in processed meat products, such as mixed pressed hams, to perform accurate microbial risk assessments. Considering cold storage temperatures and the amount of time in the stages of consumption after opening, the growth of L. monocytogenes was determined as a function of temperature at 0, 5, 10, and $15^{\circ}C$, and time at 0, 1, 3, 6, 8, 10, 15, 20, 25, and 30 days. Based on the results of these measurements, a Baranyi model using the primary model was developed. The input parameters of the Baranyi equation in the variable temperature for polynomial regression as a secondary model were developed: $SGR=0.1715+0.0199T+0.0012T^2$, $LT=5.5730-0.3215T+0.0051T^2$ with $R^2$ values 0.9972 and 0.9772, respectively. The RMSE (Root mean squared error), $B_f$ (bias factor), and $A_f$ (accuracy factor) on the growth prediction model were determined to be 0.30, 0.72, and 1.50 in SGR (specific growth rate), and 0.10, 0.84, and 1.35 in LT (lag time), respectively. Therefore, the model developed in this study can be used to determine microorganism growth in the stages of consumption of mixed pressed hams and has potential in microbial risk assessments (MRAs).

Modeling Growth Kinetics of Lactic Acid Bacteria for Food Fermentation

  • Chung, Dong-Hwa;Kim, Myoung-Dong;Kim, Dae-Ok;Koh, Young-Ho;Seo, Jin-Ho
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.664-671
    • /
    • 2006
  • Modeling the growth kinetics of lactic acid bacteria (LAB), one of the most valuable microbial groups in the food industry, has been actively pursued in order to understand, control, and optimize the relevant fermentation processes. Most modeling approaches have focused on the development of single population models. Primary single population models provide fundamental kinetic information on the proliferation of a primary LAB species, the effects of biological factors on cell inhibition, and the metabolic reactions associated with cell growth. Secondary single population models can evaluate the dependence of primary model parameters, such as the maximum specific growth rate of LAB, on the initial external environmental conditions. This review elucidates some of the most important single population models that are conveniently applicable to the LAB fermentation analyses. Also, a well-defined mixed population model is presented as a valuable tool for assessing potential microbial interactions during fermentation with multiple LAB species.

Theoretical Consideration of the Modified Haldane Model of the Substrate Inhibition in the Microbial Growth Processes (미생물 성장 공정에서의 기질 저해에 관한 modified Haldane 모델의 이론적 고찰)

  • Hwang, Young-Bo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.277-286
    • /
    • 2008
  • This paper deals with the theoretical derivation of the modified Haldane model of the substrate inhibition in the microbial growth processes. Based on the biological concepts of substrate-receptor complex working mechanisms, a new microbial kinetics of N-fold multiplex substrate inhibition and its generalization has been considered theoretically, which is natural expansion of the simple substrate inhibition mechanism in the enzyme reaction. As a result, the modified Haldane model of the substrate inhibition turns out to be a well-designed four-parameter kinetic model with a biological constant of the total substrate inhibition concentration.

Parameterising a Microplankton Model

  • Lee, Jae-Young;Tett, Paul;Kim, Kyung-Ryeul
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.185-210
    • /
    • 2003
  • This paper describes and assesses the parameterisation of MP, the microplankton compartment of the carbon­nitrogen microplankton­detritus model. The compartment is 'the microbial loop in a box' and includes pelagic bacteria and protozoa as well as phytoplankton. The paper presents equations and parameter values for the autotroph and microheterotroph components of the microplankton. Equations and parameter values for the microplankton as a whole are derived on the assumption of a constant 'heterotroph fraction'. The autotroph equations of MP allow variation in the ratios of nutrient elements to carbon, and are largely those of the 'cell­quota, threshold­limitation' algal growth model, which can deal with potential control of growth by several nutrients and light. The heterotroph equations, in contrast, assume a constant elemental composition. Nitrogen is used as the limiting nutrient in most of the model description, and is special in that MP links chlorophyll concentration to the autotroph nitrogen quota.

Behavior of Soluble Microbial Products by the Internal Recycle Rate in MBR Process (MBR공정에서 내부 반송비에 따른 생물대사성분의 거동)

  • Lee, Won-Bae;Cha, Gi-Cheol;Jeong, Tae-Young;Kim, Dong-Jin;Yoo, Ik-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.602-608
    • /
    • 2005
  • A laboratory-scale experiment was conducted to investigate control of soluble microbial products (SMP) by the internal recycle rate in the submerged membrane separation activated sludge process. The internal recycle rate of the reactor RUN 1 and RUN 2 were 100 % and 200 %, respectively. SMP concentration was rapidly accumulated in the reactor (RUN 1). The variation of accumulated SMP concentration was related to the denitrification rate at the beginning experiment however SMP concentration decreased without correlatively to the denitrification rate during long operation time. The microbial kinetic model was rapidly presented in the both microbial growth and extinction in the reactor (RUN 1). In the SMP kinetic model, Internal recycle rate is the lower, value of UAP and BAP which SMP matter were presented low. The study about development of kinetic model is relatively well adjusted to the experiment exception SMP. In the future, SMP formation equation must be thought that continually research is necessary.

Toluene Removal and Microbial Growth of Candida tropicalis Immobilized with Polymer Media in Airlift Bioreactors (효모 Candida tropicalis 고정화 담체를 이용한 Airlift 미생물반응기의 톨루엔 제거 및 미생물 성장)

  • Namgung, Hyeong-Kyu;Song, JiHyeon;Jung, Mi-Young;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • This study was conducted to improve biological degradation efficiency of toluene as a model volatile organic compound (VOC) using yeast Candida tropicalis and to suggest an effective method for bioreactor operation. The yeast strain was immobilized with polyethylene glycol (PEG), alginate, and powdered activated carbon (PAC). The yeast-immobilized polymer media were used as fluidized materials in an airlift bioreactor. Polymer media without PAC were also made and operated in another airlift bioreactor. The two bioreactors showed toluene removal efficiencies ranging 80-96% at loading rates of $10-35 g/m^3-hr$, and the bioreactor containing the polymer media with PAC achieved higher removal efficiency. Protein contents in the liquid phase showed that the bioreactor using the yeast-immobilized polymer media with PAC had a higher rate of microbial growth initially than that without PAC. In addition, the microbial growth rate inside of the polymer media with PAC was five times higher than that without PAC. Consequently, the polymer media containing the yeast strain and PAC could enhance removal efficiencies for VOCs, and the immobilization method improve microbial activity and stability for a long-term operation of biological systems.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

Application of Bayesian Calibration for Optimizing Biophysicochemical Reaction Kinetics Models in Water Environments and Treatment Systems: Case Studies in the Microbial Growth-decay and Flocculation Processes (베이지안 보정 기법을 활용한 생물-물리-화학적 반응 동역학 모델 최적화: 미생물 성장-사멸과 응집 동역학에 대한 사례 연구)

  • Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.4
    • /
    • pp.179-194
    • /
    • 2024
  • Biophysicochemical processes in water environments and treatment systems have been great concerns of engineers and scientists for controlling the fate and transport of contaminants. These processes are practically formulated as mathematical models written in coupled differential equations. However, because these process-based mathematical models consist of a large number of model parameters, they are complicated in analytical or numerical computation. Users need to perform substantial trials and errors to achieve the best-fit simulation to measurements, relying on arbitrary selection of fitting parameters. Therefore, this study adopted a Bayesian calibration method to estimate best-fit model parameters in a systematic way and evaluated the applicability of the calibration method to biophysicochemical processes of water environments and treatment systems. The Bayesian calibration method was applied to the microbial growth-decay kinetics and flocculation kinetics, of which experimental data were obtained with batch kinetic experiments. The Bayesian calibration method was proven to be a reasonable, effective way for best-fit parameter estimation, demonstrating not only high-quality fitness, but also sensitivity of each parameter and correlation between different parameters. This state-of-the-art method will eventually help scientists and engineers to use complex process-based mathematical models consisting of various biophysicochemical processes.

Discovery of D-Stereospecific Dipeptidase from Thermophilic Bacillus sp. BCS-l and Its Application for Synthesis of D-Amino Acid-Containing Peptide

  • Baek, Dae-Heoun;Kwon, Seok-Joon;Park, Jin-Seo;Lee, Seung-Goo;Mheen, Tae-Ick;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.646-649
    • /
    • 1999
  • A thermophilic bacterium producing D-stereospecific dipeptidase was isolated from Korean soil samples. The enzyme hydrolyzed the peptide bond between D-alanyl-D-alanine (D-Ala-D-Ala). The isolated bacterial strain was rod shaped, gram-positive, motile, and formed an endospore. Morphological and physiological characteristics suggested this microorganism a thermophilic Bacillus species, and was named as Bacillus sp. BCS-l. The production of D-stereospecific dipeptidase was growth-associated and optimal at $55^{\circ}C$. The enzyme was applied for the synthesis of D-amino acid-containing peptide, N-benzyloxycarbonyl-L-aspartyl-D-alanine benzyl ester (Z-L-Asp-D-AlaOBzl), as a model reaction. A thermodynamically controlled synthesis of Z-L-Asp-D-AlaOBzl was achieved in an organic solvent.

  • PDF

Changes of Principal Components and Microbial Population in Pyungwi-san Decoction according to the Preservation Temperature and Period (평위산 전탕액의 보관온도 및 기간에 따른 주요성분 및 미생물 군집 변화)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo;Kim, Jung-Hoon;Shin, Kwang-Soo
    • The Journal of Korean Medicine
    • /
    • v.32 no.5
    • /
    • pp.41-49
    • /
    • 2011
  • Objectives: To optimize the preservation method of herbal decoction, we investigated the content of principle components of Pyungwi-san, liquiritin, glycyrrhizin, and hesperidin according to preservation temperature and period. We also investigated the changing patterns of pH and microbial population in Pyungwi-san decoction as a model case. Methods: With samples preserved at different temperatures, the content of liquiritin, glycyrrhizin, and hesperidin was determined using HPLC and microbial population was determined as viable counting method up to 8 times every month. Identification of isolated bacteria was performed by 16S rDNA analysis. Results: The content of liquiritin and glycyrrhizin did not change according to the preservation temperature and period, but that of hesperidin was severely decreased at room temperature. The isolate from the decoction was identified as Bacillus licheniformis by 16S rDNA sequence analysis. Microbial population appeared after 3 months' preservation and reached maximum value at 4 months; at all tested temperatures, the pH showed the lowest value (4.4-4.5) simultaneously. Conclusion: From the results, it seems to be that the microbial growth affects the pH of preserved decoction but not the change of liquiritin and glycyrrhizin content.