• Title/Summary/Keyword: microbial enzyme

Search Result 575, Processing Time 0.032 seconds

Changes in Microorganisms and Enzyme Activities of Low-salted Kochujang added with Horseradish Powder during Fermentation (양고추냉이 분말을 첨가한 저염 고추장의 숙성 중 미생물과 효소 활성의 변화)

  • Oh, Ji-Young;Kim, Yong-Suk;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.463-467
    • /
    • 2005
  • To reduce salt content in Korean traditional kochujang, horseradish powder (1.2%, w/w) was added to kochujang with 4-10% salt, and its microbial characteristics, enzyme activities, and gas formation in kochujang were evaluated during fermentation far 120 days at $25^{\circ}C$. All treatments of kochujang had no effects on total viable bacterial numbers, which kept constant level, during fermentation (7.32-8.765 log CFU/g). Yeast numbers did not change under all treatments up to 90 days of fermentation, then decreased thereafter, ${\alpha}$-Amylase and ${\beta}$-amylase, and neutral- and acid-pretense activities of kochujang added with horseradish powder were higher than those of control group. ${\beta}$-Amylase activity of kochujang increased in proportion to salt concentration. Total accumulative volume of gas produced during fermentation of kochujang without horseradish powder was 5,892 mL/pack then decreased to 121-347mL/pack with low-salted kochujang (salt 4%, 6%) added with horseradish powder, Major gas produced was $CO_{2}(74-80%)$. Results indicate salt contents of kochujang could be lowered up to 6% by addition of horseradish powder without gas formation and quality alteration.

Studies on the Microbial Utilization of Agricultural Wastes (Part 13) Optimization of Simultaneous Hydrolysis-Fermentation for Ethanol Production from Rice Straw (농생폐자원의 미생물학적 이용에 관한 연구 (제13보) Ethanol 생산을 위한 동시당화-발효조건의 검사)

  • Lee, Jung-Yoon;Kim, Byung-Hong;Bae, Moo;Kim, Sung-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.71-75
    • /
    • 1981
  • Studies were made to optimize the simultaneous hydrolysis-fermentation (SSF) process for the production of ethanol from rice straw. Trichoderma sp. KI 7-2 was selected to produced cellulase by solid culture for SSF. Ethanol production was highest when the SSF process utilized koji culture of the fungus grown on a medium of wheat bran-rice straw 3 : 2 mixture with moisture content of 50% adjusted to pH 4.5 for 7 days as the enzyme source. It was found that pretreatment of the substrate is not necessary. To ferment 1g of rice straw by SSF 2.47 units of cellulase were required, and the initial yeast concentration of 2.5$\times$10$^{7}$ cell/$m\ell$ was found to be sufficient. Optimum pH and temperature for the process were 4.5 and 4$0^{\circ}C$, respectively. It was also found that higher ethanol concentration in the broth can be obtained by the addition of substrate or substrate and enzyme to SSF broth.

  • PDF

Sterilization Effects on Mulberries (Morus alba L.) Washed with Electrolyzed Water and Chlorine Dioxide (전해수와 이산화염소수 세척에 따른 뽕나무 오디(Morus alba L.)의 살균효과)

  • Teng, Hui;Lee, Sun-Ho;Lee, Won-Young
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.5
    • /
    • pp.654-661
    • /
    • 2013
  • The current research is designed to analyze sterilization effects on mulberries in terms of storage temperature and storage period after treating with tap water (TW), electrolyzed water (EW) and aqueous chlorine dioxide ($ClO_2$). The treated $ClO_2$ concentrations are 10, 50, 100 and 200 ppm. In each concentration, the mulberries are soaked for 30 seconds respectively. The sterilization effects are being compared at room temperature ($25^{\circ}C$) and at $4^{\circ}C$, respectively. And the enzyme activity related to quality is also being investigated and analyzed about for browning inhibition effects. Microbial sterilizing power increases more in treating plots with EW and $ClO_2$ than treating plot with TW. Futhermore sterilizing power of $ClO_2$ increased sharply on high concentration treatment plot as well. Sterilization effects of $ClO_2$ during storage time are better at cold temperature. Pictures taken from scanning electron microscope reveal that there are no microbes in sterilizing solutions treatment plots. From measurement of the enzyme activity, it is concluded that activities decrease more in sterilizing solutions treatment plots as comparing with TW treated plot during the time. The amount of total polyphenolics decrease with the time passing and EW and $ClO_2$ treatment shows less contents than TW treatment. Thus, EW and $ClO_2$ treatment of mulberris are considered as method to improve safety by reducing total plate count and to contribute to quality maintenance and to extend storage time.

Enzymatic Synthesis of Ethyl Butyrate Using Ester Synthetase Derived from Banana Peel and Pineapple Peel (바나나 껍질과 파인애플 껍질 Ester Synthetase를 이용한 Ethyl Butyrate의 효소적 합성)

  • Yoon, Ki-Hong;Kim, Kee-huck;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1122-1127
    • /
    • 2017
  • Currently, the consumer trends are increasing towards "natural" in all food systems. Therefore, in the flavor industry, the production of flavor esters by "natural" methods are needed. On the other hand, "natural flavor" is expensive to produce because of the limited natural source. Recently, the flavor obtained from the enzyme or microbial could be represented as "natural flavor". Ethyl butyrate is used most frequently as a fruity aroma in drinks and the processed food industry. In this study, ethyl butyrate was synthesized enzymatically using the ester synthetase obtained from the waste of pineapple and banana peel. The ethyl butyrate production optimization was analyzed using a response surface methodology. The enzyme reaction variances were composed of the ethanol content, butyric acid content, and reaction time. As a result, in ester synthetase obtained from banana peel, the maximum predicted production amounts were 45.8199 mM at an ethanol content of 38.7050 mM, butyric acid content of 50.9019 mM, and reaction time of 4.3662 h. In ester synthetase obtained from pineapple peel, the maximum predicted production was 65.1087 mM at an ethanol content of 54.6502 mM, butyric acid content of 58.7638 mM, and reaction time of 4.7436 h. In conclusion, ethyl butyrate production was shown the more useful using the ester synthetase obtained from pineapple peel than that from banana peel.

Effect of Lycium chinense Fruit on the Physicochemical Properties of Kochujang (구기자를 첨가한 고추장의 숙성 중 이화학적 특성)

  • Kim, Dong-Han;Ahn, Byung-Yong;Park, Bock-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.461-469
    • /
    • 2003
  • Effects of fruit of Lycium chinense (Chinese matrimony vine) on enzyme activities, and microbial and physicochemical properties of kochjuang were investigated during 12 weeks of fermentation. Enzyme activities were higher during middle of fermentation, and protease activities increased as the ratio of L. chinense increased. Facultative anaerobic bacteria counts decreased in L. chinense-added kochujang, whereas viable cell count of yeasts was higher in 1% L. chinense-added kochujang. Consistency of kochujang decreased by addition of L. chinense. Hunter L- and a-values of L. chinense added kochujang were high, causing slight change in total color difference (E) as the ratio of L chinense increased. Moisture contents of kochujang increased during fermentation, whereas water activities decreased. As the ratio of L. chinense increased, water activities increased. Titrable acidities and oxidation-reduction potential increased by addition of L. chinense. Total sugar contents of kochujang decreased rapidly during fermentation, whereas reducing sugar contents increased up to $2{\sim}4$ weeks of fermentation. As the ratio of L. chinense increased, reducing sugar contents decreased. Ethanol contents of kochujang increased during fermentation, with higher values in 3% L. chinense-added kochujang. Amino and ammonia nitrogen contents of kochujang increased L. chinense content increased. After 12 weeks of fermentation, sensory results showed 3% L. chinense-added kochujang showed highest taste and overall acceptability, and color acceptability increased as L. chinense content increased.

Manufacturing of Korean Traditional Rice Wine, Makgeolli, Supplemented with Strawberry and Its Physicochemical and Microbial Properties during Fermentation (딸기를 첨가한 막걸리의 제조와 발효 과정 중 이화학적 및 미생물학적 특성)

  • Bae, Sang-Min;Han, Sang-Min;Choi, Jong-Myung;Lee, Jong-Soo;Kim, Ha-Kun
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.307-313
    • /
    • 2016
  • To develop a functional strawberry Makgeolli, we produced Makgeolli using strawberry as an additive and then investigated its physicochemical properties. Among 7 different alcohol-fermenting yeasts, Saccharomyces cerevisiae JSK104 produced 17.4% ethanol on the 7th day of fermentation and was selected for use in the brewing of strawberry Makgeolli. Changes in physicochemical properties, numbers of yeast and lactic acid bacteria, and antihypertensive angiotensin-converting enzyme inhibitory activity were investigated during the fermentation of strawberry Makgeolli. The pH tended to decrease and the total acidity increased as the fermentation period elapsed. The ethanol content reached about 17% on the 7th day after fermentation, and the numbers of yeast and lactic acid bacteria reached a maximum on the 1st day of fermentation and then maintained a constant number. The antihypertensive angiotensin-converting enzyme activity reached a maximum after 5 days of fermentation and then was not significantly changed afterwards.

Quality characteristics of buckwheat Soksungjang manufactured by Bacillus subtilis HJ18-4 (Bacillus subtilis HJ18-4를 이용하여 제조한 메밀 속성장의 품질특성)

  • Park, Na Young;Lee, Sun Young;Kim, Ji Yeun;Choi, Hye Sun
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.699-704
    • /
    • 2013
  • Buckwheat Soksungjang (BS) is a bealmijang manufactured with buckwheat and soybeans. We manufactured BS using Bacillus subtilis HJ18-4 (HJ18-4), which has high enzyme activities and antibacterial effects. HJ18-4 was inoculated in a different process during the BS manufacturing, which was the meju-making time (Treat 1), and the salt water time was added (Treat 2). The physiochemical and microbial characteristics of the BS were analyzed. As a result, the total aerobic counts (7~8 log CFU/mL) in the BS increased after 15 days of fermentation. Especially, Treat 1 showed higher total aerobic counts and amino-type nitrogen (65.38~202.52 mg%) than Treat 2. During the BS fermentation, the reduction of the sugar contents and the enzyme (protease and amylase) activities decreased. In the relative quantitative expression level of PlcR, Treat 1 did not show toxin gene expressions at the end of the fermentation on Day 23. Treat 1 showed suitable B. cereus physiochemical quality characteristics and inhibition effects. When the modified-form type of fermented soybean paste was manufactured with a single starter, it could not reproduce the natural fermentation quality. These results suggest that the addition of a starter (HJ18-4) in the Meju manufacturing process could enhance the quality characteristics of the manufactured BS via natural fermentation and by suppressing B. cereus.

Enzymological Properties of the Alkaline AL-Protease from Arthrobacter luteus and Detection of Its Active Amino Acid Residue (Arthrobacter luteus로부터 유래한 염기성 AL-Protease의 효소학적 성질 및 활성 아미노산 잔기의 검색)

  • Oh, Hong-Rock;Aizono, Yasuo;Funatsu, Masaru
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.2
    • /
    • pp.193-204
    • /
    • 1984
  • The enzymatic properties of the alkaline AL-protease, which had been prepared from the crude zymolyase of Arthrobzoter luteus, was investigated together with its active amino acid residue. Complete inactivaton of the proteolytic activity of AL-protease by either DFP or PMSF was simultaneously accompanied by the loss of its lytic effect on the lysis of yeast cell wall. In the reaction, AL-protease showed the pattern of inactivation to decrease very slowly, as compared to that of chymotrypsin, and that enzyme and DFP were found to react with a molar ratio of 1 : 1. The preparation of AL-protease exhibited no hydrolytic activity in any substrates of polysaccharases, playing a significant role in the lysis of yeast cell wall. The optimum pH and temperature of AL-protease was pH 10.5 and $65^{\circ}C$, respectively. It also showed stability in the pH range from 5 to 11 and at the temperature below $65^{\circ}C$. Through the identification of the amino acid residue in the active site of the $^{32}P$-diisopropylph-osphorylated(DIP) AL-protease modified specifically with $^{32}P$-labeled DFP, AL-protease was found to be a DFP-sensitive which has a mole of active serine residue involved in its proteolytic activity per mole of the enzyme.

  • PDF

Changes in Enzyme Activity and Sensory Characteristics of Kochujang with Different Ratios of Added Deoduk (Codonopsis lanceolata) Root Powder (더덕 분말 첨가량을 달리한 고추장의 효소력 변화 및 관능적 특성)

  • Sung, Jung-Min;Kim, Ok-Sun;Ryu, Hye-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1150-1156
    • /
    • 2011
  • Deoduk (Codonopsis lanceolata) root powder was added to traditional kochujang to improve the quality of traditional kochujang. The microbial characteristics, enzyme activities, and sensory characteristics were investigated during fermentation. The aerobic bacterial count in kochujang was not remarkabley different, and yeast and mold decreased during fermentation. Yeast and mold in the kochujang with 3 and 5% added deoduk root powder were 5 log scale at 8 weeks, whereas those in the control reached the same level at 6 weeks. ${\alpha}$, ${\beta}$-Amylase activity was at its highest level at 4 weeks during fermentation, and glucose and fructose contents showed the same results. The major free sugars in kochujang were glucose and fructose, and their contents increased rapidly at 2 weeks. Free sugar contents of kochujang with added deoduk was higher than that in the control. The sensory evaluation results showed that 1 and 3% deoduk kochujang had higher scores for taste and overall acceptance than those in the control. In particular, 1% deoduk kochujang had the highest scores.

Determination of Biogenic Amines using an Amperometric Biosensor with a Carbon Nanotube Electrode and Enzyme Reactor (Carbon Nanotube 전극과 효소반응기로 구성된 Amperometric Biosensor를 이용한 Biogenic Amines 검출)

  • Kim, Jong-Won;Jeon, Yeon-Hee;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.5
    • /
    • pp.735-742
    • /
    • 2010
  • Biogenic amines are synthesized by microbial decarboxylation for the putrefaction or fermentation of foods containing protein. Although biogenic amines such as histamine, tyramine, and putrescine are required for many physiological functions in humans and animals, consumption of high amounts of biogenic amines can cause toxicological effects, including serious gastrointestinal, cutaneous, hemodynamic, and neurological symptoms. In this study, a novel amperometric biosensor wasdeveloped to detect biogenic amines. The biosensor consisted of a working electrode, a reference electrode, a counter electrode, an enzyme reactor with immobilized diamine oxidase, an injector, a peristaltic pump and a potentiostat. A working electrode was fabricated with a glassy carbon electrode (GCE) by coating functionalized multi-walled carbon nanotubes (MWCNT-$NH_2$) and by electrodepositing Prussian blue (PB) to enhance electrical conductivity. A sensor system with PB/MWCNT-$NH_2$/GCE showed linearity in the range of $0.5 {\mu}M{\sim}100 {\mu}M$ hydrogen peroxide with a detection limit of $0.5 {\mu}M$. The responses for tyramine, 2-phenylethylamine, and tryptamine were 95%, 75%, and 70% compared to that of histamine, respectively. These results imply that the biosensor system can be applied to the quantitative measurement of biogenic amines.