• Title/Summary/Keyword: microbial decay

Search Result 86, Processing Time 0.023 seconds

Slurry Phase Decomposition of Food Waste by Using Various Microorganisms (미생물을 이용한 액상소멸방식의 음식물쓰레기 처리)

  • Kwon, Bum Gun;Na, Suk-Hyun;Lim, Hye-Jung;Lim, Chae-Sung;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • This study investigated the reduction of food waste through the slurry phase decomposition in a source of food waste by microorganisms. The reactor used in the experiment was composed of both woodchip with wood material and sponges with polyurethane material as media of attached microorganisms, and food waste was mixed with a constant cycle consisted of a stirring device. During the experimental period of 100 days, the change in weight over the cumulative total amount of food waste added was reduced by 99%. Approximately, 1% of the residual food waste could be inherently recalcitrant materials (cellulose, hemicellulose, lignin, etc.) and thus was thought to be the result of the accumulation. The initial pH in wastewater generated from food waste was low with 3.3 and after 24 hours treatment this pH was increased to 5.8. The concentrations of COD, BOD, SS, salinity, TN and TP were gradually decreased. Food waste decay was proceeded by the seven species microorganisms identified and confirmed in this study, making a slurry phase and thus reducing residual food wastes. In the initial phase, the microbial population was approximately $3.3{\times}10^4$ cell/mL, and after 15 days this population was a constant with $5.1{\times}10^6$ cell/mL which means a certain stabilization for the reduction of food wastes. From these results, it can be considered that organic matter decomposition as well as the weight loss of food wastes by microorganisms is done at the same time.

Characterization of Termite Inhabitation Environment on Wooden Cultural Heritages (목조문화재 흰개미 서식환경 특성 연구)

  • Seo, Min Seok;Jo, Chang Wook;Kim, Soo Ji;Kim, Young Hee;Hong, Jin Young;Lee, Jeung Min;Jeong, So Young
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.387-393
    • /
    • 2015
  • Damages of wooden cultural heritages caused by various bio-species have been a trend that is increasing on climate change. The decay and bio-damage caused by microbial organisms or insect species are also known to factors of the shape changes and structural problems of wooden cultural heritages. There are so many phenomenons of damage and weathering in wooden cultural heritage for many years and particularly termite can threaten seriously wooden cultural heritage. We investigated with respect to internal and external environment and termite inhabitation around the wooden cultural heritage in Jeollanam-do, Jeollabuk-do, and Jeju-do. As this investigation results, we confirmed that there were the difference in between resident and non-resident about temperature, humidity, moisture contents of wooden building. Resident building is high temperature but humidity and moisture contents is low and these factors are sources of inhabitation condition change about insects as termites. Now we suggest to carry out in parallel to the target wooden cultural heritage and the surrounding habitat for wooden cultural heritage termite damage investigation. Also with the chemical control methods, we must consider necessary to present eco-friendly control management such as construction of heating facilities, residential status, periodic management.

Use of Freshness Indicator for Determination of Freshness and Quality Change of Beef and Pork during Storage (신선도표시계를 이용한 쇠고기 및 돼지고기의 저장 중 신선도 측정 및 품질 변화)

  • Shin, Hee-Young;Ku, Kyoung-Ju;Park, Sang-Kyu;Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.325-330
    • /
    • 2006
  • To determine freshness and detect changes in quality of beef and pork during storage, we manufactured a freshness indicator and monitored the surface pH, volatile basic nitrogen (VBN), thiobarbituric acid reacted substance (TBARS), total bacterial counts, electronic nose analysis, and sensory evaluation. Both beef loin and pork belly had a change in the color of the freshness indicator after storage of 6 days at $2^{\circ}C$. VBN and TBARS levels and total bacterial counts reached the decay point at the time of the color change of the freshness indicator attached to the surface of the beef and pork samples. Sensory evaluation also indicated that the samples were unacceptable by an 'off' odor on day 6 of storage. There were significant differences in electronic nose analysis for samples from day 0, day 6, and day 10 of storage. These results suggest that this freshness indicator should be useful in determining the expiration date of beef and pork products during marketing by indicating the microbial safety as well as the physicochemical and sensory changes.

Storage Stability of Raw Beef, Dry-Aging Beef, and Wet-Aging Beef at Refrigeration Temperature (냉장 온도에서 생육, 습식숙성육, 건식숙성육의 저장 안전성)

  • An, Seol Bin;Hwang, Sun Hye;Cho, Yong Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.2
    • /
    • pp.170-176
    • /
    • 2020
  • We investigated the pH, volatile basic nitrogen (VBN), microbial changes and dominant microbes in raw beef, wet-aging beef, and dry-aging beef after the meat had been stored in a refrigerator. The count of mesophilic bacteria was 3.3-3.9 log CFU/g in raw beef and dry-aging beef, and 5.4 log CFU/g in wet-aging meat. After 18 days of refrigeration, the mesophilic bacterial count in raw and aging beef increased to 6.1-6.4 log CFU/g. In wet-aging beef, the number of lactic acid bacteria increased from 4.5 log CFU/g to 6.0 log CFU/g at refrigeration temperature. However, lactic acid bacteria were not detected in dry aging beef. Major foodborne pathogens such as Salmonella spp, Listeria monocytogenes, and Escherichia coli (EHEC) were not detected. Based on the legal standard for mesophilic bacteria count, the estimated shelf-life of aged beef was less than 12 days and the average VBN was 15 mg%. The dominant microorganisms varied between the different types of meat. In raw meat, Staphylococcus saprophyticus was the dominant microorganism, and as the VBN increased, Carnobacterium divergens dominated. In wet-aging beef, Carnobacterium divergens dominated during the initial days of refrigeration after which the number of Lactobacillus sakei increased. Dermacoccus nishinomiyaensis was initially the dominant microbe in dry-aging beef, after which Pseudomonas fragi dominated. In addition to the role of specific bacteria in the early stage of decay, it is thought that microorganisms can be utilized for safe distribution and storage of matured meats by conducting research on changes in rot, fragrance analysis, and changes of ingredients in matured meats.

Use of Freshness Indicator for Determination of Freshness and Quality Change of Chicken during Storage (신선도표시계를 이용한 계육의 저장 중 신선도 측정 및 품질변화)

  • Shin, Hee-Young;Ku, Kyoung-Ju;Park, Sang-Kyu;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.761-767
    • /
    • 2006
  • To determine freshness and quality change of chicken products during storage, we manufactured freshness indicator and monitored the surface pH, volatile basic nitrogen (VBN), thiobarbituric acid reacted substance (TBARS), total bacterial counts, electronic nose analysis, and sensory evaluation. All chicken products (drum, wing, thigh) had a change in color of freshness indicator after storage of 3 days at $4^{\circ}C$, indicating poor quality at the time. VBN, TBARS values, and total bacterial counts reached the decay point at the time of color change of freshness indicator attached to the surface of chicken samples. The sensory evaluation also indicated sample was not acceptable by off-odor at day 4 of storage. According to electronic nose analysis to examine off-odor, there were significant differences in terms of principal component analysis values among chicken samples of day 0, day 3, and day 5 of storage. These results suggest that freshness indicator should be useful in determining expiration date of chicken products during marketing by indicating the microbial safety as well as physicochemical and sensory change.

Developmemt of Rice Husk Pellets as Bio-filter Media of Bio Scrubber Odor Removal System (왕겨펠렛 생물담체 개발 및 이를 이용한 bio scrubber형 악취제거 시스템 성능평가)

  • Bae, Jiyeol;Han, Sangjong;Park, Ki Ho;Kim, Kwang-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.554-566
    • /
    • 2018
  • The rice husk contains nutrients which can be easily utilized by microorganisms, and also has a water retaining ability, which played a crucial part in enabling it to become a biofilter media. In this study, we evaluated the applicability of rice husk pellet bio-scrubber as a microbiological carrier. The pelletization experiment of rice husk as a biological media was performed using PVA and EVA binder. Also, the feasibility tests of rice husk as a biological media for odor removal were carried out in order to know whether rice-husk contains useful components as a media for microbiological growth or not. Lastly, a combined test for odor gas absorption and biological oxidation was conducted using a lab scale bio-filter set-up packed with rice-husk pellets as wet-scrubber. The major components of the rice husk were carbon, hydrogen, nitrogen, and oxygen, while carbon acted as the main ingredient which comprised up to 23.00%. The C : N : P ratio was calculated as 45 : 1 : 2. Oxygen uptake rate, yield and decay rate of the rice husk eluent was calculated to be $0.0049mgO_2/L/sec$, 0.24 mgSS/mgCOD and 0.004 respectively. The most stable form of rice husk pellets was produced when the weight of the rice husk, EVAc, PVAc, and distilled water was 10 : 2 : 0.2 : 10. The prepared rice husk pellets had an apparent density of 368 g/L and a porosity of 59.00% upon filling. Dry rice husks showed high adsorption capacity for ammonia gas but low adsorption capacity for hydrogen sulfide. The bio-filter odor removal column filled with rice husk pellets showed more than 99.50% removal efficiency for NH3 and H2S gas. Through the analysis of circulation water, the prime removal mechanism is assumed to be the dissolution by water, microbial nitrification, and sulfation. Finally, it was confirmed that the microorganisms could survive well on the rice husk pellets, which provided them a stable supply of nutrients for their activity in this long-term experiment. This adequate supply of nutrients from the rice husk enabled high removal efficiency by the microorganisms.

Bio-kinetic and Design Analysis for Box-mill Wastewater Treatment Using Anoxic Activated Sludge Process (무산소 활성오니공정을 이용한 판지공장 폐수처리의 동력학적 해석 및 설계분석)

  • Cho, Yong-Duck;Lee, Sang-Wha;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1090-1097
    • /
    • 2006
  • The anoxic activated sludge process was applied to the treatment of industrial box-mill wastewater, which exhibited the high removal efficiencies of $90{\sim}94%$$ TCOD_{Mn}$ and $58{\sim}81%$ Color. For the design of industrial anoxic activated sludge process, Monod bio-kinetic coefficients of box-mill wastewater were estimated as follows: $K_{max}$(maximum specific substrate removal rate)=0.52 $day^{-1}$, $K_s$(half saturation constant)=314 mg/L, $K_d$(decay coefficient)=0.274 $day^{-1}$, y(microbial yield coefficient)=0.908 mg/mg, and ${\mu}_{max}$(maximum specific growth rate)=0.472 $day^{-1}$. Space loading factors for the design analysis were practically determined as the values of F/M ratio=$0.043{\sim}0.07$ kg-$TCOD_{Mn}$/kg-SS-day, BOD space loading=$0.18{\sim}0.3$ kg-$TCOD_{Mn}/m^3-day$, and ${\theta}_x=6.8{\sim}26.4$ day when considering the relationship of these loading factors with growth dynamics of microorganisms, the F/M ratio that is inversely proportional to ${\theta}_x$ should be equivalent to ${\mu}_{max}$ in units, but exhibited the significant difference between theses two values. Therefore, it is considered that high safety factors are requested in the design of anoxic activated sludge process that is based on Monod bio-kinetics of microorganism.

Effect of Hot Water Treatment on Storage Quality of Minimally Processed Onion (열수처리가 신선 편의가공 양파의 저장품질에 미치는 효과)

  • Hong, Seok-In;Lee, Hyun-Hee;Son, Seok-Min;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • Storage quality of minimally processed onion as influenced by hot-water dipping was investigated to examine feasibility of mild heat treatment as efficient post-processing method. fresh onions were peeled, trimmed, and dipped in hot water at various temperatures ($50-80^{\circ}C$) for 1 min. Heat-treated onions were cooled, de-watered, packaged in low density polyethylene (LDPE) film pouches ($63\;{\mu}m\;thickness$), and stored at $10^{\circ}C$. Samples treated at higher temperatures ($70-80^{\circ}C$) showed significant increases in flesh weight loss and discoloration during storage as compared to others. Hot-water dipping remarkably reduced initial microbial load of prepeeled onions, with over 1 log cycle decrease in aerobic bacterial count. After 7 days storage, no significant differences in viable aerobe count were observed among treated and untreated samples, with both showing $10^{6}-10^{7}\;CFU/g$. For sensory attributes including discoloration, wilting, decay, and visual quality, onions treated with hot-water dipping at $60^{\circ}C$ scored highest. Results suggested hot-water dipping at specific condition as practical post-processing treatment could effectively prolong shelf life of minimally processed onion.

Early Stage Decomposition of Emergent Macrophytes (대형 수생식물의 초기 분해에 관한 연구)

  • Shin, Jin-Ho;Choi, Sang-Kyu;Yeon, Myung-Hun;Kim, Jeong-Myung;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.565-572
    • /
    • 2006
  • This study examined the decomposition of blades and culms of aquatic emergent plant species, Zizania latifolia, Phragmites communis and Typha angustata, which were the most frequent in Lake Paldang. The experiment was carried out from July to December, 2005 in fresh water of lake Paldang using litter bag method. The litter bags had 1.2 mm mesh size and were suspended at 1 m depth of water surface. Remaining mass of blades and culms of each species after 97 days was 21.2% and 22.6% of initial mass in Z. latifolia, 32.5% and 56.4% in P. communis and 44.7% and 38.1 % in T. angustata, respectively. The plant tissue having high N concentration and low C/N exhibited the faster decay rate than the others. However, the tissue of high content of lignin, cellulose, lignin:N, and cullulose:N showed a slow decomposition rate. Water temperature was the most effective environmental factor on the emergent macrophyte litter decomposition in aquatic ecosystems. According to the water temperature, DO, $NO_3^-$-N, and total phosphate concentration were changed in the linear way. The mass loss of plant tissue of emergent macrophytes showed positive relationship with P concentration in water. The experiments on the decomposition of the litter using different mesh sized litter bag did not show significant differences between them. The results suggest that the decomposition of emergent macrophytes in fresh water of lake Paldang, which showed features of lentic and lower part of a stream, was affected by microbial activities better than the micro-invertebrates such as shredders.

Effect of Temperatures and Fillers on Yield and Quality of Turmeric (Curcuma longa L.) During Postharvest Seed Rhizome Storage (종근 저장 온도 및 충진제가 강황 수량 및 품질에 미치는 영향)

  • Lim, Jung Dae;Kim, Eun Hye;Yun, Jae Yeon;Park, Hae Il;Shim, Hun Sub;Choi, Ri Na;Yang, Yae Sul;Park, Chung Bum;Ahn, Young Sup;Chung, Ill Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.334-341
    • /
    • 2013
  • Studies were carried to evaluated the influence of storage method by temperatures and fillers on yield and quality of seed rhizome in turmeric. Seed rhizome was stored at styrofoam box filled with rice hull and sand (3:1) or vermiculite for 30, 60 and 90 days at different temperatures (5, 10 and $15^{\circ}C$. compared to traditional method (rhizome only). Parameters were obtained for weight loss, cold injury, percentage of decayed in stored rhizome during storage periods. Also, the germination, growth pattern and yield from stored rhizome has been investigated. It was confirmed that storage of turmeric in stored with filled with vermiculite helps in prevention of rhizomes from microbial and fungal attack. The storage of rhizomes in styrofoam box without any filler at low temperature below $10^{\circ}C$. is not advocated due to heavy losses weight and decayed in management of postharvest for turmeric rhizome. Germination percentage, growth pattern and yield was maximum for rhizomes stored at styrofoam box filled with vermiculite for 90 days at $15^{\circ}C$. The paper outlines a brief attempt to assess the efficacy of non-chemical methods including optimal storage method (temperature and filler) of control of decay and moisture losses during storage of turmeric.