DOI QR코드

DOI QR Code

Storage Stability of Raw Beef, Dry-Aging Beef, and Wet-Aging Beef at Refrigeration Temperature

냉장 온도에서 생육, 습식숙성육, 건식숙성육의 저장 안전성

  • An, Seol Bin (Food Analysis Center, Korea Food Research Institute) ;
  • Hwang, Sun Hye (Food Analysis Center, Korea Food Research Institute) ;
  • Cho, Yong Sun (Food Analysis Center, Korea Food Research Institute)
  • 안설빈 (한국식품연구원 식품분석센터) ;
  • 황선혜 (한국식품연구원 식품분석센터) ;
  • 조용선 (한국식품연구원 식품분석센터)
  • Received : 2019.12.09
  • Accepted : 2020.02.28
  • Published : 2020.04.30

Abstract

We investigated the pH, volatile basic nitrogen (VBN), microbial changes and dominant microbes in raw beef, wet-aging beef, and dry-aging beef after the meat had been stored in a refrigerator. The count of mesophilic bacteria was 3.3-3.9 log CFU/g in raw beef and dry-aging beef, and 5.4 log CFU/g in wet-aging meat. After 18 days of refrigeration, the mesophilic bacterial count in raw and aging beef increased to 6.1-6.4 log CFU/g. In wet-aging beef, the number of lactic acid bacteria increased from 4.5 log CFU/g to 6.0 log CFU/g at refrigeration temperature. However, lactic acid bacteria were not detected in dry aging beef. Major foodborne pathogens such as Salmonella spp, Listeria monocytogenes, and Escherichia coli (EHEC) were not detected. Based on the legal standard for mesophilic bacteria count, the estimated shelf-life of aged beef was less than 12 days and the average VBN was 15 mg%. The dominant microorganisms varied between the different types of meat. In raw meat, Staphylococcus saprophyticus was the dominant microorganism, and as the VBN increased, Carnobacterium divergens dominated. In wet-aging beef, Carnobacterium divergens dominated during the initial days of refrigeration after which the number of Lactobacillus sakei increased. Dermacoccus nishinomiyaensis was initially the dominant microbe in dry-aging beef, after which Pseudomonas fragi dominated. In addition to the role of specific bacteria in the early stage of decay, it is thought that microorganisms can be utilized for safe distribution and storage of matured meats by conducting research on changes in rot, fragrance analysis, and changes of ingredients in matured meats.

생육, 습식 숙성육, 건식 숙성육을 종류별 3종을 구입하여 냉장 상태로 보관하면서 pH, 휘발성 염기질소(VBN), 미생물 정량, 우점균을 분석하였다. 초기 생육, 건식 숙성육의 중온균은 3.3-3.9 Log CFU/g, 습식 숙성육은 경우 5.4 Log CFU/g 이였으나, 냉장으로 18일 보관 후 생육과 건식 숙성육에 존재하는 중온균은 6.1-6.4 Log CFU/g로 증가하였다. 습식 숙성육의 경우 Lactic acid bacteria (LAB)는 냉장 보관시 4.5-6.0 Log CFU/g으로 나타났으나, 건식숙성육에서는 검출되지 않았다. 저장 기간이 길어짐에 따라 중온균, 저온균, LAB, 효모 및 곰팡이 수가 증가하였으나, 식품매개 병원성 미생물은 검출되지 않았다. 식육의 오염 및 부패 판단은 7 Log CFU/g 이상으로 규정하고 있어 본 연구 결과에 의하면 12일 이상 냉장 보관하였을 경우 6-7 Log CFU/g으로 기준을 초과하였다. 이 때 VBN이 평균 15 mg%으로 부패의 초기 단계로 판단 할 수 있었다. 냉장 보관에 따른 우점 미생물은 다양한 양상으로 나타냈다. 생육에서는 초기 우점균으로 S. saprophyticus가 분석되었으나, VBN이 증가함에 따라 Carnobacterium divergens가 우점하는 양상을 나타냈다. 습식 숙성육에서 Carnobacterium divergens가 냉장보관 초기에 우점 미생물로 분석되었으나, 이후 Lactobacillus sakei가 우점균으로 분석되었다. 건식 숙성육의 경우 Dermacoccus nishinomiyaensis가 냉장보관 초기에 우점하였으나 이후 Pseudomonas fragi가 우점균으로 변화하였다. 부패의 초기 단계에서 특정 박테리아의 역할 외에도 부패, 향기 분석 및 숙성 육류의 성분 변화에 대한 연구를 수행하여 숙성 육류의 안전한 유통 및 보관에 활용할 수 있다고 판단된다.

Keywords

References

  1. Hulankova, R., Kamenik, J., Salakova, A., Zavodsky, D., Borilova, G., The effect of dry aging on instrumental, chemical and microbiological parameters of organic beef loin muscle., Lwt-Food Sci Technol., 89, 559-565 (2018). https://doi.org/10.1016/j.lwt.2017.11.014
  2. Lee H.Y., Yoon Y.H. Microbiological safety of dry-aging meat. Safe Food., 10, 37-41 (2015).
  3. Smith, R.D., Nicholson, K.L., Nicholson, J.D.W., Harris, K.B., Miller, R.K., Griffin, D.B., Savell, J.W., Retail cutting yields and consumer palatability evaluations of steaks from US Choice and US Select short loins. Meat Sci., 79, 631-639 (2008). https://doi.org/10.1016/j.meatsci.2007.10.028
  4. Doulgeraki, A.I., Ercolini, D., Villani, F., Nychas, G.-J.E., Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol., 157, 130-141 (2012). https://doi.org/10.1016/j.ijfoodmicro.2012.05.020
  5. Gram, L., Dalgaard., P., Fish spoilage bacteria-problems and solutions. Curr. Opin. Biotechnol., 13, 262-266 (2002). https://doi.org/10.1016/S0958-1669(02)00309-9
  6. Ercolini, D., Russo, F., Torrieri, E., Masi, P., Villani, F., Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Appl. Environ. Microbiol., 72, 4663-4671 (2006). https://doi.org/10.1128/AEM.00468-06
  7. Ercolini, D., Russo, F., Nasi, A., Ferranti, P., Villani, F., Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl. Environ. Microbiol., 75, 1990-2001 (2009). https://doi.org/10.1128/AEM.02762-08
  8. Ministry of Food and Drug Safty, (2019, December 31). Korea Food Standards Codex. Retrieved from http://www.foodsafetykorea.go.kr/foodcode/index.jsp
  9. U.S Food and Drug Adminitration, (2020. March. 11). Bacteriological Analytical Manual. Retrived from https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam
  10. Kagambega, A., Martikainen, O., Lienemann, T., Siitonen, A., Traore, A. S., Barro, N., Haukka, K., Diarrheagenic Escherichia coli detected by 16-plex PCR in raw meat and beef intestines sold at local markets in Ouagadougou, Burkina Faso. Int. J. Food Microbiol., 153, 154-158 (2012). https://doi.org/10.1016/j.ijfoodmicro.2011.10.032
  11. Limbo, S., Torri, L., Sinelli, N., Franzetti, L., Casiraghi, E., Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures. Meat Sci., 84, 129-136 (2010). https://doi.org/10.1016/j.meatsci.2009.08.035
  12. The National Law Information Center, (2020, January 31). The Korean Representative Legal Information. Retrieved from http://law.go.kr/admRulLsInfoP.do?admRulSeq=2100000004431
  13. ICMSF, 1986. In Microorganisms in foods 2, 2nd Ed, Sampling for Microbiological Analysis. University of Toronto Press, Toronto. pp. 130-137.
  14. Kim, J.Y., Song, K.B., Effect of vacuum packaging on the microbiological profile of chilled chicken during storage. J. Appl. Biol. Chem., 47, 35-37 (2004).
  15. Verma, S.P., Sahoo, J., Improvement in the quality of ground chevon during refrigerated storage by tocopherol acetate preblending. Meat Sci., 56, 403-413 (2000). https://doi.org/10.1016/S0309-1740(00)00072-3
  16. Shin, H.Y., Ku, K.J., Park, S.K., Song, K.B., Use of freshness indicator for determination of freshness and quality change of beef and pork during storage. Korean J. Food Sci. Technol., 38, 325-330 (2006).
  17. Lee, H.J., Choe, J., Yoon, J.W., Kim, S., Oh, H., Yoon, Y.J., C., Determination of salable shelf-life for wrap-packaged dry-aged beef during cold storage. Korean J. food Sci. Anim. Resour., 38, 251 (2018). https://doi.org/10.5851/KOSFA.2018.38.2.251
  18. Kim, S., Lee, H.J., Kim, M., Yoon, J.W., Shi, D.J., Jo C., Storage Stability of Vacuum-packaged Dry-aged Beef during Refrigeration at $4^{\circ}C$. Food Sci. Anim. Resour., 39, 266 (2019). https://doi.org/10.5851/kosfa.2019.e21
  19. Leisner, J.J., Laursen, B.G., Prevost, H., Drider, D., Dalgaard, P., Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol. Rev., 31, 592-613 (2007) https://doi.org/10.1111/j.1574-6976.2007.00080.x
  20. Laursen, B.G., Bay, L., Cleenwerck, I., Vancanneyt, M., Swings, J., Dalgaard, P., Leisner, J.J., Carnobacterium divergens and Carnobacterium maltaromaticum as spoilers or protective cultures in meat and seafood: phenotypic and genotypic characterization. Syst. Appl. Microbiol., 28, 151-164 (2005). https://doi.org/10.1016/j.syapm.2004.12.001
  21. Nychas, G.-J.E., Skandamis, P.N., Tassou, C.C., Koutsoumanis, K.P., Meat spoilage during distribution. Meat Sci., 78, 77-89 (2008). https://doi.org/10.1016/j.meatsci.2007.06.020
  22. Davies, A.R., Board, R.J., 1998. The Microbiology of Meat and Poultry. In: Stanbridge L.H. Davies A.R. The microbiology of chilled-stored meat. New York. pp. 174-219.
  23. Davies, A.R., Board, R.J., 1998. The Microbiology of Meat and Poultry. In: Nychas G.J. Drosinos E.H. Chemical changes in stored meat. New York. pp. 288.
  24. De Filippis, F., La Storia, A., Villani, F., Ercolini, D., Strainlevel diversity analysis of Pseudomonas fragi after in situ pangenome reconstruction shows distinctive spoilage-associated metabolic traits clearly selected by different storage conditions. Appl. Environ. Microbiol., 85, e02212-18 (2019).