• Title/Summary/Keyword: microbial composition

Search Result 592, Processing Time 0.03 seconds

Relationship between the structure and composition of rumen microorganisms and the digestibility of neutral detergent fibre in goats

  • Liu, Kaizhen;Wang, Lizhi;Yan, Tianhai;Wang, Zhisheng;Xue, Bai;Peng, Quanhui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.82-91
    • /
    • 2019
  • Objective: This experiment was conducted to compare the structure and composition of ruminal microorganisms in goats with high and low neutral detergent fibre (NDF) digestibility. Methods: Nineteen crossbred goats were used as experimental animals and fed the same total mixed rations during the 30-day pre-treatment and 6-day digestion trialperiods. All faeces were collected during the digestion period for measuring the NDF digestibility. Then, high and the low NDF digestibility individuals were chosen for the high NDF digestibility group (HFD) and low NDF digestibility group (LFD), respectively. Rumen contents were collected for total microbial DNA extraction. The V4 region of the bacterial 16S rRNA gene was amplified using universal primers of bacteria and sequenced using high-throughput sequencer. The sequences were mainly analysed by QIIME 1.8.0. Results: A total of 18,694 operational taxonomic units were obtained, within 81.98% belonged to bacteria, 6.64% belonged to archaea and 11.38% was unassigned microorganisms. Bacteroidetes, Firmicutes, and Proteobacteria were the predominant microbial phyla in both groups. At the genus level, the relative abundance of fifteen microorganisms were significantly higher (p<0.05) and six microorganisms were extremely significantly higher (p<0.01) in LFD than HFD. Overall, 176 core shared genera were identified in the two groups. The relative abundance of 2 phyla, 5 classes, 10 orders, 13 families and 15 genera had a negative correlation with NDF digestibility, but only the relative abundance of Pyramidobacter had a positive correlation with NDF digestibility. Conclusion: There were substantial differences in NDF digestibility among the individual goats, and the NDF digestibility had significant correlation with the relative abundance of some ruminal microorganisms.

Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress

  • Lee, Shin Ae;Kim, Hyeon Su;Sang, Mee Kyung;Song, Jaekyeong;Weon, Hang-Yeon
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.662-672
    • /
    • 2021
  • Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.

Effect of Modified Atmosphere Packaging Varying in CO2 and N2 Composition on Quality Characteristics of Dry Fermented Sausage during Refrigeration Storage

  • Ameer, Ammara;Seleshe, Semeneh;Kang, Suk Nam
    • Food Science of Animal Resources
    • /
    • v.42 no.4
    • /
    • pp.639-654
    • /
    • 2022
  • The current study investigated the effects of the most suitable modified atmosphere packaging (MAP) on the physicochemical, microbiological, and sensory properties of fermented dry sausages during 45 days of refrigeration (4℃) storage period. Treatments were vacuum-packed (control), 25% CO2/75% N2 (MAP1), 50% CO2/50% N2 (MAP2), 70% CO2/30% N2 (MAP3), and 100% CO2 (MAP4). All MAP samples regardless of their CO2 composition significantly (p<0.05) decreased in pH, aw, total plate count, and lactic acid bacteria count values as compared to the vacuum-package during storage. The Enterobacteriaceae count in all MAP packaging was significantly (p<0.05) lower than the vacuum-packed samples and counts in MAP3 and MAP4 samples were markedly (p<0.05) lower than all other treatments in prolonged storage of 15 and 45 days. Based on the thiobarbituric acid reactive substance content at day 15 and 30 storage time, treatments are ranked as follows: Vacuum-packed>MAP1>MAP2>MAP3>MAP4. The a* of MAP4 was higher than all other treatments. In the final storage days, no variation was exhibited (p>0.05) among treatments in lactic acid aroma and sourness, and MAP2 samples had the lowest (p<0.05) overall acceptability. The use of MAPs with an increase in the CO2 from MAP1 to MAP4 samples can help in better microbial inhibition than vacuum package, and 70% CO2/30% N2 (MAP3) and 100% CO2 (MAP4) were effective to maintain several quality parameters (aw, pH, microbial inhibition, stability against lipid oxidation, and instrumental color traits) and extend the shelf life of dry fermented sausage.

Soil properties and molecular compositions of soil organic matter in four different Arctic regions

  • Sujeong, Jeong;Sungjin, Nam;Ji Young, Jung
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.282-291
    • /
    • 2022
  • Background: The Arctic permafrost stores enormous amount of carbon (C), about one third of global C stocks. However, drastically increasing temperature in the Arctic makes the stable frozen C stock vulnerable to microbial decomposition. The released carbon dioxide from permafrost can cause accelerating C feedback to the atmosphere. Soil organic matter (SOM) composition would be the basic information to project the trajectory of C under rapidly changing climate. However, not many studies on SOM characterization have been done compared to quantification of SOM stocks. Thus, the purpose of our study is to determine soil properties and molecular compositions of SOM in four different Arctic regions. We collected soils in different soil layers from 1) Cambridge Bay, Canada, 2) Council, Alaska, USA, 3) Svalbard, Norway, and 4) Zackenberg, Greenland. The basic soil properties were measured, and the molecular composition of SOM was analyzed through pyrolysis-gas chromatography/mass spectrometry (py-GC/MS). Results: The Oi layer of soil in Council, Alaska showed the lowest soil pH and the highest electrical conductivity (EC) and SOM content. All soils in each site showed increasing pH and decreasing SOC and EC values with soil depth. Since the Council site was moist acidic tundra compared to other three dry tundra sites, soil properties were distinct from the others: high SOM and EC, and low pH. Through the py-GC/MS analysis, a total of 117 pyrolysis products were detected from 32 soil samples of four different Arctic soils. The first two-axis of the PCA explained 38% of sample variation. While short- and mid-hydrocarbons were associated with mineral layers, lignins and polysaccharides were linked to organic layers of Alaska and Cambridge Bay soil. Conclusions: We conclude that the py-GC/MS results separated soil samples mainly based on the origin of SOM (plants- or microbially-derived). This molecular characteristics of SOM can play a role of controlling SOM degradation to warming. Thus, it should be further investigated how the SOM molecular characteristics have impacts on SOM dynamics through additional laboratory incubation studies and microbial decomposition measurements in the field.

Composition of Human Breast Milk Microbiota and Its Role in Children's Health

  • Notarbartolo, Veronica;Giuffre, Mario;Montante, Claudio;Corsello, Giovanni;Carta, Maurizio
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.3
    • /
    • pp.194-210
    • /
    • 2022
  • Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.

Proximate Content Monitoring of Black Soldier Fly Larval (Hermetia illucens) Dry Matter for Feed Material using Short-Wave Infrared Hyperspectral Imaging

  • Juntae Kim;Hary Kurniawan;Mohammad Akbar Faqeerzada;Geonwoo Kim;Hoonsoo Lee;Moon Sung Kim;Insuck Baek;Byoung-Kwan Cho
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1150-1169
    • /
    • 2023
  • Edible insects are gaining popularity as a potential future food source because of their high protein content and efficient use of space. Black soldier fly larvae (BSFL) are noteworthy because they can be used as feed for various animals including reptiles, dogs, fish, chickens, and pigs. However, if the edible insect industry is to advance, we should use automation to reduce labor and increase production. Consequently, there is a growing demand for sensing technologies that can automate the evaluation of insect quality. This study used short-wave infrared (SWIR) hyperspectral imaging to predict the proximate composition of dried BSFL, including moisture, crude protein, crude fat, crude fiber, and crude ash content. The larvae were dried at various temperatures and times, and images were captured using an SWIR camera. A partial least-squares regression (PLSR) model was developed to predict the proximate content. The SWIR-based hyperspectral camera accurately predicted the proximate composition of BSFL from the best preprocessing model; moisture, crude protein, crude fat, crude fiber, and crude ash content were predicted with high accuracy, with R2 values of 0.89 or more, and root mean square error of prediction values were within 2%. Among preprocessing methods, mean normalization and max normalization methods were effective in proximate prediction models. Therefore, SWIR-based hyperspectral cameras can be used to create automated quality management systems for BSFL.

Effects of dietary mangosteen peel extract on growth performance, jejunum morphology, cytokines profiles, and fecal microbiome in growing pigs with high stocking density

  • Minji Kim;Jin Young Jeong;Nam-Geon Park;Eunju Kim;Sang Seok Joo;Moongyeong Jung;Myunghoo Kim;Yoo-Bhin Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.841-860
    • /
    • 2023
  • The present study was conducted to evaluate the effects of dietary mangosteen peel extract (MPE) on growth performance, serum biochemistry, jejunum morphology, and cytokine levels in growing pigs raised at a high stocking density. A total of 120 male growing pigs (43.68 ± 0.48 kg) were randomly arranged in a 2 × 2 factorial design with stocking density (high; HD, 0.55 m2/pig and normal; ND, 0.82 m2/pig) and dietary MPE (0 or 5 g/kg) as factors. Each treatment had six replicates with four or six pigs per treatment. Feed and water were provided ad libitum for 6 weeks. The HD group exhibited lower final body weight, average daily gain, and average daily feed than the ND group (p < 0.05). None of the factors affected villus height to crypt depth ratio. Dietary MPE, but not stocking density, increased IL-10 levels in the serum com-pared to the non-supplemented control diet (p < 0.05). In the microbiome analysis, alpha diversity analysis showed significant reductions in the MPE-treated group only under normal density conditions. High density stress induced gut microbiome changes and these response was differ between normal and MPE diet fed pigs. Overall, each group exhibited different major microbial composition in the gut. In conclusion, there were significant changes in the major microbial composition in response to high-density stress, and this variation was influenced by dietary treatment.

Consumption of poly-γ-glutamate-vitamin B6 supplement and urinary microbiota profiles in Korean healthy adults: a randomized, double-blinded, placebo-controlled intervention study

  • Jungmin Park;Inkyung Baik
    • Nutrition Research and Practice
    • /
    • v.18 no.5
    • /
    • pp.663-673
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Poly-γ-glutamic acid (γ-PGA), a natural polymer found in fermented soybean products, has been reported to play a prebiotic role in the gut. This intervention study investigated the effects of γ-PGA-containing supplement consumption on urinary microbiota in healthy adults because of limited data on such investigation. SUBJECTS/METHODS: A 4-week parallel trial including 39 male and female Korean adults, who were free of chronic diseases and infection, was designed as a randomized, double-blinded, placebo-controlled study. A total of 30 participants completed the study wherein the intervention group (n = 17) received a mixture supplement containing 600 mg/day of γ-PGA and 100 mg/day of vitamin B6, while the control group (n = 13) received a placebo. Paired datasets (baseline and endpoint data) of microbiota profiles, which were constructed via urinary assays of microbe-derived extracellular vesicles, were analyzed and compared between the two groups. RESULTS: Only the intervention group yielded significant results for the Bray-Curtis and Jaccard dissimilarity indices between baseline and endpoint data (P < 0.05). In the phylum-level analysis of microbial composition, the Firmicutes to Bacteroidetes ratio (FB ratio) tended to decrease from baseline in the intervention group; however, it increased in the control group. Differences between the baseline and endpoint FB ratios were significant between the two groups (P < 0.05). CONCLUSION: This study's findings suggest that γ-PGA-vitamin B6 supplementation potentially alters the microbial community composition of a host. Further investigation into the biological consequences of commensal microbiota alteration by γ-PGA-containing supplement consumption is warranted.

Application of Response Surface Methodology in Medium Optimization to Improve Lactic Acid Production by Lactobacillus paracasei SRCM201474 (반응표면분석법을 이용한 Lactobacillus paracasei SRCM201474의 생산배지 최적화)

  • Ha, Gwangsu;Kim, JinWon;Im, Sua;Shin, Su-Jin;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.522-531
    • /
    • 2020
  • The aim of this study was to establish the optimal medium composition for enhancing L(+)-lactic acid (LLA) production using response surface methodology (RSM). Lactobacillus paracasei SRCM201474 was selected as the LLA producer by productivity analysis from nine candidates isolated from kimchi and identified by 16S rRNA gene sequencing. Plackett-Burman design was used to assess the effect of eleven media components on LLA production, including carbon (glucose, sucrose, molasses), nitrogen (yeast extract, peptone, tryptone, beef extract), and mineral (NaCl, K2HPO4, MgSO4, MnSO4) materials. Glucose, sucrose, molasses, and peptone were subsequently chosen as promising media for further optimization studies, and a hybrid design experiment was used to establish their optimal concentrations as glucose 15.48 g/l, sucrose 16.73 g/l, molasses 39.09 g/l, and peptone 34.91 g/l. The coefficient of determination of the equation derived from RSM regression for LLA production was mathematically reliable at 0.9969. At optimum parameters, 33.38 g/l of maximum LLA increased by 193% when compared with MRS broth as unoptimized medium (17.66 g/l). Our statistical model was confirmed by subsequent validation experiments. Increasing the performance of LLA-producing microorganisms and establishing an effective LLA fermentation process can be of particular benefit for bioplastic technologies and industrial applications.

Effect of Culture Media on Production of Biomass, Fatty Acid, and Carotenoid in a Newly Isolated Mychonastes sp. (신규 분리된 Mychonastes sp.의 생장, 지방산 및 색소 생산에 생장배지가 미치는 영향)

  • Yim, Kyung June;Jang, Hyun-Jin;Park, Yeji;Nam, Seung Won;Hwang, Byung Su;Jung, Ji Young;Lee, Chang Soo;Kim, Z-Hun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • This study examined the growth, fatty acid (FA) content, and carotenoids of a newly isolated freshwater microalga, Mychonastes sp. 246, in various culture media. The appropriate temperature and light intensity for culturing Mychonastes sp. 246 were determined as 18℃-22℃ and 200-250 µmol/m2/s using a high throughput photobioreactor. The microalgal cells were cultivated in 0.5 L bubble column photobioreactors using BG11, Bold's Basal media, and f/2 media. According to the growth results of the microalgae, BG11, among the tested media, showed the highest biomass concentrations (3.5 ± 0.1 g/L in 10 d). To enhance the biomass growth of the microalgae, the N:P ratio in BG11 was manipulated from 45:1 to 7:1 based on the stoichiometric cell composition. The biomass concentrations of Mychonastes sp. 246 grown on the manipulated BG11 (MBG) increased to 38% (4.6 ± 0.3 g/L in d) compared with the original BG11 (3.3 g/L). The FA content of the microalgae grown on the MBG was lower (8.4%) than that of the original BG11 (10.1%) while the FA compositions did not exhibit any significant differences. Furthermore, three kinds of carotenoids were identified in Mychonastes sp. 246, zeaxanthin, lutein, and β-carotene. These results suggest an effective strategy for increasing biomass concentrations, FA content, and carotenoids of microalgae by performing a simple N:P adjustment in the culture media.