• Title/Summary/Keyword: microbial changes

Search Result 1,037, Processing Time 0.029 seconds

Changes in the ginsenoside content during the fermentation process using microbial strains

  • Lee, So Jin;Kim, Yunjeong;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.392-397
    • /
    • 2015
  • Background: Red ginseng (RG) is processed from Panax ginseng via several methods including heat treatment, mild acid hydrolysis, and microbial conversion to transform the major ginsenosides into minor ginsenosides, which have greater pharmaceutical activities. During the fermentation process using microbial strains in a machine for making red ginseng, a change of composition occurs after heating. Therefore, we confirmed that fermentation had occurred using only microbial strains and evaluated the changes in the ginsenosides and their chemical composition. Methods: To confirm the fermentation by microbial strains, the fermented red ginseng was made with microbial strains (w-FRG) or without microbial strains (n-FRG), and the fermentation process was performed to tertiary fermentation. The changes in the ginsenoside composition of the self-manufactured FRG using the machine were evaluated using HPLC, and the 20 ginsenosides were analyzed. Additionally, we investigated changes of the reducing sugar and polyphenol contents during fermentation process. Results: In the fermentation process, ginsenosides Re, Rg1, and Rb1 decreased but ginsenosides Rh1, F2, Rg3, and Compound Y (C.Y) increased in primary FRG more than in the raw ginseng and RG. The content of phenolic compounds was high in FRG and the highest in the tertiary w-FRG. Moreover, the reducing sugar content was approximately three times higher in the tertiary w-FRG than in the other n-FRG. Conclusion: As the results indicate, we confirmed the changes in the ginsenoside content and the role of microbial strains in the fermentation process.

Climate Effects on Greenhouse Gas Emissions and Microbial Communities in Wetlands (기후변화가 습지 내 온실기체 발생과 미생물 군집구조에 미치는 영향)

  • Kim, Seon-Young;Kang, Ho-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.161-169
    • /
    • 2007
  • Global climate changes including elevated $CO_2$, drought, and global warming may influence greenhouse gas emissions in wetlands. A variety of microbial communities including denitrifiers and methanogens play a key role in determining such processes. In this paper we summarize current knowledge on the effects of climate changes on $CO_2,\;CH_4$, and $N_2O$ production and microbial communities mediating those processes in wetlands. Elevated atmospheric $CO_2$ and warming generally increase gas emissions, but effects of droughts differ with gas type and drying level. The responses of microbial community to climate changes in terms of composition, diversity and abundance are still in question due to lack of studies in wetlands. Based on the present review, it is suggested that future studies on microbial processes should consider microbial community and relationships between microbial function and structure with diverse environmental factors including climate changes. Such knowledge would be crucial to better understand and predict accurately any shifts in ecological functions of wetlands.

Changes in the Microbial Community of the Mottled Skate (Beringraja pulchra) during Alkaline Fermentation

  • Park, Jongbin;Kim, Soo Jin;Kim, Eun Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1195-1206
    • /
    • 2020
  • Beringraja pulchra, Cham-hong-eo in Korean, is a mottled skate which is belonging to the cartilaginous fish. Although this species is economically valuable in South Korea as an alkaline-fermented food, there are few microbial studies on such fermentation. Here, we analyzed microbial changes and pH before, during, and after fermentation and examined the effect of inoculation by a skin microbiota mixture on the skate fermentation (control vs. treatment). To analyze microbial community, the V4 regions of bacterial 16S rRNA genes from the skates were amplified, sequenced and analyzed. During the skate fermentation, pH and total number of marine bacteria increased in both groups, while microbial diversity decreased after fermentation. Pseudomonas, which was predominant in the initial skate, declined by fermentation (Day 0: 11.39 ± 5.52%; Day 20: 0.61 ± 0.9%), while the abundance of Pseudoalteromonas increased dramatically (Day 0: 1.42 ± 0.41%; Day 20: 64.92 ± 24.15%). From our co-occurrence analysis, the Pseudoalteromonas was positively correlated with Aerococcaceae (r = 0.638) and Moraxella (r = 0.474), which also increased with fermentation, and negatively correlated with Pseudomonas (r = -0.847) during fermentation. There are no critically significant differences between control and treatment. These results revealed that the alkaline fermentation of skates dramatically changed the microbiota, but the initial inoculation by a skin microbiota mixture didn't show critical changes in the final microbial community. Our results extended understanding of microbial interactions and provided the new insights of microbial changes during alkaline fermentation.

Use of Terminal Restriction Length Polymorphism (T-RFLP) Analysis to Evaluate Uncultivable Microbial Community Structure of Soil

  • Chauhan, Puneet Singh;Shagol, Charlotte C.;Yim, Woo-Jong;Tipayno, Sherlyn C.;Kim, Chang-Gi;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.127-145
    • /
    • 2011
  • Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time- and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.

Effect of Vacuum Packaging on the Microbial Change of Chicken during Storage

  • Kim, Jiyoun;Song, Kyung-Bin
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.188.1-188
    • /
    • 2003
  • To examine the effect of vacuum packaging on the quality of chicken during storage, microbial (total bacterial counts, mold and yeast, E. coli, and Pseudomonas) changes and drip loss were determined. fresh chicken breasts were prepared and packaged using polyethylene film under vacuum and normal atmosphere, respectively. Samples were then stored at 4$^{\circ}C$ for two weeks. At various time intervals during storage, sample was taken homogenized, and diluted with 0.1% sterile peptone water, and followed by microbial counts. Microbial changes of total bacterial counts, mold and yeast, E. coli, and Pseudomonas during storage of chicken were significantly decreased by vacuum packaging. Drip loss was also significantly decreased. These results indicate that vacuum packaging of chicken should be recommended as a suitable storage method in terms of microbial safety as well as quality of chicken.

  • PDF

Changes in the Composition and Microbial Community of the Pepper Rhizosphere in Field with Bacterial Wilt Disease

  • Hyun Gi, Kong;Mee Kyung, Sang;Ju Hee, An;Songhwa, Kim;Yong Ju, Jin;Jaekyeong, Song
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.692-699
    • /
    • 2022
  • Bacterial wilt caused by Ralstonia solanacearum is considered one of the most harmful diseases of pepper plants. Recently, research on plant disease control through the rhizosphere microbiome has been actively conducted. In this study, the relationship with disease occurrence between the neighboring plant confirmed by analyzing the physicochemical properties of the rhizosphere soil and changes in the microbial community. The results confirmed that the microbial community changes significantly depending on the organic matters, P2O5, and clay in the soil. Despite significant differences in microbial communities according to soil composition, Actinobacteriota at the phylum level was higher in healthy plant rhizosphere (mean of relative abundance, D: 8.05 ± 1.13; H: 10.06 ± 1.59). These results suggest that Actinobacteriota may be associated with bacterial wilt disease. In this study, we present basic information for constructing of healthy soil in the future by presenting the major microbial groups that can suppress bacterial wilt.

Effects of simulated acid rain on microbial activities and litter decomposition

  • Lim, Sung-Min;Cha, Sang-Seob;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.401-410
    • /
    • 2011
  • We assayed the effects of simulated acid rain on the mass loss, $CO_2$ evolution, dehydrogenase activity, and microbial biomass-C of decomposing Sorbus alnifolia leaf litter at the microcosm. The dilute sulfuric acid solution composed the simulated acid rain, and the microcosm decomposition experiment was performed at 23$^{\circ}C$ and 40% humidity. During the early decomposition stage, decomposition rate of S. alnifolia leaf litter, and microbial biomass, $CO_2$ evolution and dehydrogenase activity were inhibited at a lower pH; however, during the late decomposition stage, these characteristics were not affected by pH level. The fungal component of the microbial community was conspicuous at lower pH levels and at the late decomposition stage. Conversely, the bacterial community was most evident during the initial decomposition phase and was especially dominant at higher pH levels. These changes in microbial community structure resulting from changes in microcosm acidity suggest that pH is an important aspect in the maintenance of the decomposition process. Litter decomposition exhibited a positive, linear relationship with both microbial respiration and microbial biomass. Fungal biomass exhibited a significant, positive relationship with $CO_2$ evolution from the decaying litter. Acid rain had a significant effect on microbial biomass and microbial community structure according to acid tolerance of each microbial species. Fungal biomass and decomposition activities were not only more important at a low pH than at a high pH but also fungal activity, such as $CO_2$ evolution, was closely related with litter decomposition rate.

Population changes and growth modeling of Salmonella enterica during alfalfa seed germination and early sprout development

  • Kim, Won-Il;Ryu, Sang Don;Kim, Se-Ri;Kim, Hyun-Ju;Lee, Seungdon;Kim, Jinwoo
    • Food Science and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1865-1869
    • /
    • 2018
  • This study examined the effects of alfalfa seed germination on growth of Salmonella enterica. We investigated the population changes of S. enterica during early sprout development. We found that the population density of S. enterica, which was inoculated on alfalfa seeds was increased during sprout development under all experimental temperatures, whereas a significant reduction was observed when S. enterica was inoculated on fully germinated sprouts. To establish a model for predicting S. enterica growth during alfalfa sprout development, the kinetic growth data under isothermal conditions were collected and evaluated based on Baranyi model as a primary model for growth data. To elucidate the influence of temperature on S. enterica growth rates, three secondary models were compared and found that the Arrhenius-type model was more suitable than others. We believe that our model can be utilized to predict S. enterica behavior in alfalfa sprout and to conduct microbial risk assessments.

Shelf Life Extension of Korean Fresh Pasta by Modified Atmosphere Packaging

  • Lee, Dong-Sun;Paik, Hyun-Dong;Im, Geun-Hyung;Yeo, Ik-Hyun
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.4
    • /
    • pp.240-243
    • /
    • 2001
  • Fresh pasta was packaged in a modified atmosphere of 22% $CO_2$/78% $N_2$ and compared with a control air package for its quality changes during storage at 8$^{\circ}C$. The modified atmosphere packaging suppressed the microbial growth of total aerobic bacteria and yeasts/molds with a concomitant reduction in the rates of physical and chemical quality changes, and thus successfully extended the shelf life of fresh packs from 20 days of air packs to 40 days based on microbial criterion of 10$^{6}$ cfu/g. The shelf life extension was greater when the initial microbial quality of the product was better.

  • PDF

Hydrogen Yields and Microbial Community Impacts of Changes in Carbohydrate Concentration during Hydrogen Fermentation of Food Wastes (음식물류 폐기물의 수소발효시 탄수화물 농도변화에 따른 수소전환율 및 미생물군집 영향)

  • Kyung min Cho;Hye sook Park
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.175-181
    • /
    • 2024
  • This study analyzed the hydrogen conversion rate and microbial community in conjunction with changes in carbohydrate concentration during hydrogen fermentation using food waste, and presented comprehensive research results for the condition 80 g Carbo COD/L, which showed the highest efficiency with a carbohydrate removal rate of 98.1% and a hydrogen conversion rate of 1.76 mol H2/mol. The microbial community analysis found that Clostridium sp., widely known as a hydrogen-producing microorganism, was released in 80 g Carbo COD/L and confirmed that it was a dominant species at 98.1%. Conversely, in 100 g Carbo. Under COD/L conditions, Leuconostoc sp. showed the maximun prevalence, which is believed to hinder hydrogen production.