• Title/Summary/Keyword: microbial cell growth

Search Result 301, Processing Time 0.03 seconds

Potentials of Synbiotics for Pediatric Nutrition and Baby Food Applications: A Review (소아 영양 및 유아식 응용을 위한 신바이오틱스의 잠재력: 총설)

  • Jung, Hoo Kil;Kim, Sun Jin;Seok, Min Jeong;Cha, Hyun Ah;Yoon, Seul Ki;Lee, Nah Hyun;Kang, Kyung Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • Probiotic, prebiotic, and synbiotic substances as well as microorganisms were added to infant formula in an attempt to influence the intestinal microflora with an aim to stimulate the growth of lactic acid bacteria, especially bifidobacteria and lactobacilli. Over the last 10 years, new synbiotic infant formulas containing probiotics and prebiotics have been proposed in order to simulate the effect of breast-feeding on the intestinal microflora. Owing to their synergistic effect, the new synbiotics are expected to be more helpful than using probiotics and prebiotics individually. Maintenance of the viability of the probiotics during food processing and the passage through the gastrointestinal tract should be the most important consideration, since a sufficient number of bacteria ($10^8cfu/g$) should reach the intended location to have a positive effect on the host. Storage conditions and the processing technology used for the manufacture of products such as infant formula adversely affect the viability of the probiotics. When an appropriate and cost-effective microencapsulation methodology using the generally recognized as safe (GRAS) status and substances with high biological value are developed, the quality of infant formulas would improve. The effect of probiotics may be called a double-effect, where one is an immunomodulatory effect, induced by live probiotics that advantageously alter the gastrointestinal microflora, and the other comprises anti-inflammatory responses elicited by dead cells. At present, a new terminology is required to define the dead microorganisms or crude microbial fractions that positively affect health. The term "paraprobiotics" (or ghost probiotics) has been proposed to define dead microbial cells (not damaged or broken) or crude cell extracts (i.e., cell extracts with complex chemical composition) that are beneficial to humans and animals when a sufficient amount is orally or topically administered. The fecal microflora of bottle-fed infants is altered when the milk-based infant formula is supplemented with probiotics or prebiotics. Thus, by increasing the proportion of beneficial bacteria such as bifidobacteria and lactobacilli, prebiotics modify the fecal microbial composition and accordingly regulate the activity of the immune system. Therefore, considerable attention has been focused on the improvement of infant formula quality such that its beneficial effects are comparable to those of human milk, using prebiotics such as inulin and oligosaccharides and potential specific probiotics such as bifidobacteria, which selectively stimulate the proliferation of beneficial bacteria in the microflora and the indigenous intestinal metabolic activity of the microflora.

  • PDF

Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum

  • Song, Minjae;Yun, Hye Young;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.136-145
    • /
    • 2014
  • Background: This study aimed to develop a biocontrol system for ginseng root rot caused by Fusarium cf. incarnatum. Methods: In total, 392 bacteria isolated from ginseng roots and various soils were screened for their antifungal activity against the fungal pathogen, and a bacterial isolate (B2-5) was selected as a promising candidate for the biocontrol because of the strong antagonistic activity of the bacterial cell suspension and culture filtrate against pathogen. Results: The bacterial isolate B2-5 displayed an enhanced inhibitory activity against the pathogen mycelial growth with a temperature increase to $25^{\circ}C$, produced no pectinase (related to root rotting) an no critical rot symptoms at low [$10^6$ colony-forming units (CFU)/mL] and high ($10^8CFU/mL$) inoculum concentrations. In pot experiments, pretreatment with the bacterial isolate in the presumed optimal time for disease control reduced disease severity significantly with a higher control efficacy at an inoculum concentration of $10^6CFU/mL$ than at $10^8CFU/mL$. The establishment and colonization ability of the bacterial isolates on the ginseng rhizosphere appeared to be higher when both the bacterial isolate and the pathogen were coinoculated than when the bacterial isolate was inoculated alone, suggesting its target-oriented biocontrol activity against the pathogen. Scanning electron microscopy showed that the pathogen hyphae were twisted and shriveled by the bacterial treatment, which may be a symptom of direct damage by antifungal substances. Conclusion: All of these results suggest that the bacterial isolate has good potential as a microbial agent for the biocontrol of the ginseng root rot caused by F. cf. incarnatum.

Screening of the Antimicrobial Activity against Helicobacter pylori from Herb Plants (Herb식물로부터 Helicobacter pylori에 대한 항균효과 탐색)

  • Cho, Young-Je;Chun, Sung-Sook;Yoon, So-Jung;Kim, Jeung-Hoan;Kim, Tae-Wan;Choi, Ung-Kyu
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.161-165
    • /
    • 2005
  • Ethanol extracts were prepared from 40 herbs, the extracts of herbs were tested their microbial inhibition activities against Helicobacter pylori. Antimicrobial activity against H. pylori was shown by clear zone and inhibition of cell growth in 24 herbs and 26 herbs extracts. Antimicrobial activity showed the high value in ethanol extracts of Salvia officinalis, Phlomis fruticosa, Creeping Rosemarinus officinalis, Lavandula, Cymtpogan citratus, Rosemarinus officinalis, Cherry Salvia officinalis, Hypericum perforatum, Ruta graveloens, Thymus vulgaris, Oreganum vulgare and Salvia officinalis. Phenol content of herb extracts have high concentration as $134.3-533.33\;{\mu}g/ml$, respectively.

Growth of Yeasts in Alcohol Distiller′s Waste of Dried Sweet Potato for Single-cell Protein Production and BOD Reduction (절간고구마원료 주정폐액을 이용한 단세포단백질의 생산 및 폐액의 BOD제거)

  • 이형춘;구영조;민병용;이홍근
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.95-100
    • /
    • 1982
  • Torulopsis candida FRI YA-15, a selected yeast, was cultivated in alcohol distiller's waste-filtrate of dried sweet potato for microbial protein production and BOD reduction. The General composition of waste-filterate was BOD$_{5}$ 15700 ppm, COD 36800 ppm, reducing sugar 3300 ppm, total nitrogen 910 ppm, total solids 51800 ppm and ash 390 ppm. The pH of waste was 3.85. The yield to the medium of T. candida cultivated in shake-flask at $25^{\circ}C$ for 48 hrs was 3.38g/$\ell$ and effectiveness in reducing BOD$_{5}$ and COD of waste was 38.9% and 31.8%, respectively. In batch cultivation using 3 $\ell$-jar fermenter, maximum yield to the medium reached 3.2g/$\ell$after 28 hrs cultivation under the condition of temperature 35$^{\circ}C$, initial pH 4.0, aeration rate 2vvm, agitation speed 100rpm. Dry yeast was composed of crude protein 47.98% and ash 5.23%.

  • PDF

Studies on the Isolation and Identification of Lactic Acid Bacteria and its Utilization for Pharmaceutical Preparation (유산균의 분리와 동정 및 제제화에 관한 연구)

  • 김성웅;김원배;박무영;양중익;민신홍;이상희;김용배
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.4
    • /
    • pp.171-175
    • /
    • 1977
  • A microbial strain capable of producing lactic acid was isolated and identified as Streptococcus faecium. During the incubation of the isolated bacterium in a synthetic medium (Petterson broth), the optimal temperature was 36 to 39$^{\circ}C$ and the cell concentration at stationary growth phase was 2.1${\times}$10$\^$8/ viable cells/ml. When it was dried in vacuum and diluted with avicel, the Viability of Streptococcus faecium in physiological saline solution was decreased to 80% after incubation for 48 hr at 37$^{\circ}C$, whereas the viability was above 90% after incubation for 1 hr at 40$^{\circ}C$ and the viability in M buffer solution (pH 4.5∼9.0) at 37$^{\circ}C$ was above 95%. From these data it was concluded that the isolated microbe must be adoptible for pharmaceutical preparation such as solid dosage form.

  • PDF

Bioconversion of Citron oil by Co-Culture of E. coli EC3, EC4, and EC6 (E. coli 형질전환주의 공동배양에 의한 유자정유의 생전환)

  • 박연진;장해춘
    • Korean Journal of Human Ecology
    • /
    • v.4 no.1
    • /
    • pp.79-92
    • /
    • 2001
  • E. coli transformants EC3, EC4. and EC6. harboring citron oil degrading pathway genes, were co-cultured in M9 media with citron oil as a sole carbon source at 28$^{\circ}C$. Each co-culture(EC3+EC4, EC3+EC6, EC4+EC6 and EC3+EC4+EC6) showed three to four times higher cell growth than each transformant single culture. Microbial conversion products from the co-cultures were determined by GC-MS. Linalool. 4-terpineol and ${\alpha}$-terpineol were the major common products from co-cultures. Various minor products also were detected and important in flavor characteristics of cultures.

  • PDF

Antimicrobial efficacy of endophytic Penicillium purpurogenum ED76 against clinical pathogens and its possible mode of action

  • Yenn, Tong Woei;Ibrahim, Darah;Chang, Lee Kok;Ab Rashid, Syarifah;Ring, Leong Chean;Nee, Tan Wen;Noor, Muhamad Izham bin Muhamad
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.193-199
    • /
    • 2017
  • This study was aimed to evaluate the antimicrobial activity of Penicillium purpurogenum ED76 on several clinically important microorganisms. The endophytic fungus P. purpurogenum ED76 was previously isolated from Swietenia macrophylla leaf. The antimicrobial efficacy of P. purpurogenum ED76 dichloromethane extract was determined via disc diffusion and broth microdilution assay. A kill curve study was conducted and the morphology of extract treated bacterial cells were viewed under scanning electron microscope. The dichloromethane extract showed significant inhibitory activity on 4 test bacteria and 2 test yeasts. The minimal inhibitory concentration of the extract ranged from 125 to $1,000{\mu}g/ml$, which indicates the different susceptibility levels of the test microorganisms to the fungal extract. The kill curve study has revealed a concentration-dependent inhibition for all test microorganisms. With the increase of the extract concentration, the microbial growth was significantly reduced. The scanning electron micrograph of dichloromethane extract-treated Staphylococcus aureus cells showed the total damage of the cells. The cell wall invagination of the bacterial cells also indicates the loss of cellular materials and metabolic activity. The gas chromatography mass spectrometry analysis of the extract also showed that the major compound was stigmasterol, which constitutes 45.30% of the total area. The dichloromethane extract of P. purpurogenum ED76 exhibited significant inhibitory activity on several clinically important bacteria and yeasts. The study proposed a possible mode of action that the extract cause significant damage to the morphology of S. aureus cells.

Isolation and Identification of Bacteria Involved with Biomineralization at B Mine Sludge in Mexico (멕시코 B 광산 슬러지에 존재하는 생물학적 광물화 미생물의 특성에 관한 연구)

  • Kim, Joon-Ha;Yun, Seong-Yeol;Park, Yoon Soo;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.41-51
    • /
    • 2017
  • Microbial processes that bind heavy metals and form minerals are widespread, and they represent a basic aspect of biogeochemistry. Some microorganisms can crystallize minerals by secreting a specific enzyme. In particular, calcite ($CaCO_3$) precipitation is an important part of biomineralization, and has been studied extensively because of its wide application in civil engineering technology. This process provides an effective way to stabilize heavy metals within a relatively stable crystal phase. In this study, biomineralization of calcite by three urea-hydrolyzing indigenous bacterial strains was investigated by microbiological analyses. Three bacterial strains were isolated from the sludge of B mine in Mexico and each bacterial strain was identified by the cellular fatty acid composition and 16S rRNA partial sequencing analysis. The results of the identification analysis showed that these strains were closest to Sporosarcina pasteurii, Kurthia gibsonii, and Paenibacillus polymyxa. We found that the optimum conditions for growth of these indigenous bacteria were $30-40^{\circ}C$ and pH range of 7-8. Microbiological analyses showed the possibility that the bioaccumulated heavy metals ions were deposited around the cell as crystalline carbonate minerals under the optimum conditions. The findings of our study suggest that the indigenous bacterial strains play an important role in heavy metal immobilization.

The efficiency of topical anesthetics as antimicrobial agents: A review of use in dentistry

  • Kaewjiaranai, Thanawat;Srisatjaluk, Ratchapin Laovanitch;Sakdajeyont, Watus;Pairuchvej, Verasak;Wongsirichat, Natthamet
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.4
    • /
    • pp.223-233
    • /
    • 2018
  • Topical anesthetics are commonly used in oral & maxillofacial surgery to control pain in the oral cavity mucosa before local anesthetic injection. These anesthetic agents come in many forms, developed for different usages, to minimize adverse reactions, and for optimal anesthetic efficiency. Earlier studies have revealed that these agents may also limit the growth of microorganisms in the area of anesthetic application. Many topical anesthetic agents show different levels of antimicrobial activity against various bacterial strains and Candida. The dosage of local anesthetic agent used in some clinical preparations is too low to show a significant effect on microbial activity. Efficiency of antimicrobial activity depends on the local anesthetic agent's properties of diffusion within the bloodstream and binding efficiency with cytoplasmic membrane, which is followed by disruption of the bacterial cell membrane. The antimicrobial properties of these agents may extend their usage in patients to both control pain and infection. To develop the topical local anesthetic optimal usage and antimicrobial effect, a collaborating antiseptic agent may be used to benefit the local anesthetic. However, more research is required regarding minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of topical local anesthetic agents with drug interaction between anesthetics and antiseptic agents.

Effect of Culture Conditions on Characteristics of Growth and Production of Docosahexaenoic acid (DHA) by Schizochytrium mangrovei (배양조건에 따른 Schizochytrium mangrovei의 성장 및 Docosahexaenoic acid의 생산특성)

  • Jeong, U-Cheol;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.144-153
    • /
    • 2014
  • Both docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) have attracted increasing attention since the first epidemiological report on the importance of n-3 essential fatty acids. Lipids in microbial cells play various biological roles and, consequently, much research has been carried out on their role in cell physiology. The lipid composition of microorganisms can exhibit considerable variations depending on environment. The effects of culture conditions, temperature (15, 20, 24, 28, 32 and $36^{\circ}C$), salinity (10, 20, 30, 40 and 50 psu), pH (pH5, 6, 7, 8 and 9), rotation speeds (50, 100, 150 and 200 rpm), carbon sources, nitrogen sources and C/N ratio on the production of docosahexaenoic acid, fatty-acid profiles, and acids secreted to the broth culture by the oleaginous microorganism, Schizochytrium mangrovei (KCTC 11117BP), were studied. Temperature (initially $28^{\circ}C$), salinity (20 psu), pH (pH7), rotation speeds (100 rpm), organism fatty acids, and secreted acids in the broth were varied during cultivation of S. mangrovei. At pH 7.0, S. mangrovei was able to accumulate lipids up to 40% of its biomass, with 13% (w/w) DHA content. The monosaccharides glucose and fructose, and yeast extract were suitable carbon and nitrogen sources, respectively. The primary omega-3 polyunsaturated fatty acid produced was docosahexaenoic acid.