• Title/Summary/Keyword: microbatteries

Search Result 13, Processing Time 0.042 seconds

A novel urine-activated microbattery

  • Jin, Bo;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.396-397
    • /
    • 2006
  • The novel urine-activated microbatteries have been successfully demonstrated. In this microbattery, a magnesium (Mg) layer and copper chloride (CuCl) in the filter paper are used as the anode and the cathode, respectively. A stack consisting of a Mg layer, CuCl-doped filter paper and a copper (Cu) layer sandwiched between two plastic layers is hot-pressed into the microbatteries at $100^{\circ}C$. The microbatteries can be activated by adding a droplet of human urine. The experimental results show that the microbattery can deliver a maximum voltage of 1.4 V and maximum power of 1.96 mW for the $1\;k{\Omega}$ load resistor.

  • PDF

High-Voltage Liquid-Electrolyte Microbatteries Inspired from Electric Eels (전기뱀장어의 전기발생을 모사한 고전압 액체 전해질 미소전지)

  • Kim, Mun-Chul;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.469-473
    • /
    • 2009
  • We present high-voltage liquid-electrolyte microbatteries, inspired from the high-voltage generation mechanism of electric eels using serially connected multiple-cell arrays. In the microbatteries, we purge air into the electrolyte filled in a channel layer to isolate serially connected multiple cell arrays using three surface-tension valves (cell-front, outlet, and cell-end valves). Compared to the previous multi-cell stack or interconnection, present microbatteries provide a reduced multi-cell charging time. We have designed and characterized four different prototypes C1, C10, C20, and C40 having 1, 10, 20, and 40 cells, respectively. In the experimental study, the threshold pressures of cell-front, outlet, and cell-end valves were measured as $460{\pm}47$, $1,000{\pm}53$, and $2,800{\pm}170$ Pa, respectively. The average charging time for C40 was measured as $26.8{\pm}4.9$ seconds where the electrolyte and air flow-rates are 100 and $10{\mu}l/min$, respectively. Microbatteries showed the maximum voltage of 12 V (C40), the maximum power density of $110{\mu}W/cm^2$ (C40), and the maximum power capacity of $2.1{\mu}Ah/cm^2$ (C40). We also proposed a tapered-channel to remove the reaction gas from the cell chamber using a surface tension effect. The present microbatteries are applicable to high-voltage portable power devices.

[ LiCoO2 ] Thin Film Deposited by Bias Sputtering Method I. Electrochemical Characteristics (바이어스 스퍼터링 법으로 제조된 LiCoO2박막 I. 전기화학적 특성)

  • Lee, Y.J.;Park, H.Y.;Cho, W.I.;Cho, B.W.;Kim, K.B.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.261-265
    • /
    • 2003
  • The heat treatment process of thin film microbatteries manufacturing processes has several Problems. This study, without heat treatment, considered the characteristics of $LiCoO_2$ thin films deposited by bais sputtering method inducing the structural change of the thin film. The properties of deposited $LiCoO_2$ thin films such as crystal structure, morphology, and discharge capacity were observed by various analysis methods. Among $LiCoO_2$ thin films deposited by substrate bias $voltage(V_b)$, the one deposited by substrate bias voltage of -50V had the highest initial discharge capacity of about $60{\mu}Ah/cm^2{\mu}m.$ We confirmed that $LiCoO_2$ thin film could be used as cathode material of lithium thin film microbatteries without annealing.

Electrochemical Behavior of TiO2 Nanotube/Ti Prepared by Anodizing for Micro-Lithium Ion Batteries

  • Park, Soo-Gil;Yang, Jeong-Jin;Rho, Jin-Woo;Kim, Hong-Il;Habazaki, Hiroki
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • The $TiO_2$ nanotube/Ti electrode are used as an anode in thin-film lithium microbatteries is known to have high oxidation-reduction potential of 1.8 V (vs. $Li/Li^+$). It can prevent from dendrite growth of lithium during charging. The $TiO_2$ nanotube/Ti electrode was prepared by anodizing at constant voltages for thin-film lithium microbatteries. The capacities of $TiO_2$ nanotube/Ti anode prepared by anodizing at 10 V, 20 V and 30 V were observed to be $23.9{\mu}Ah\;cm^{-2}$, $43.1{\mu}Ah\;cm^{-2}$ and $74.0{\mu}Ah\;cm^{-2}$. We identified it was found that the capacity of $TiO_2$ nanotube/Ti increases with increasing anodizing voltage and the anatase structure of $TiO_2$ nanotube/Ti compared with amorphous structure has batter cycle performance than amorphous $TiO_2$ nanotube/Ti.

Effects of Drying Temperature on the $LiCoO_2$ Thin Films Fabricated by Sol-gel Method

  • Kim, Mun-Kyu;Park, Kyu-Sung;Kim, Duk-Su;Son, Jong-Tae;Kim, Ho-Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • $LiCoO_{2}$ thin films have received attention as cathodes of thin film microbatteries in these days. In this study, $LiCoO_{2}$ thin films are fabricated by a sol-gel spin coating method followed by a post-annealing process. The thermal decomposition behaviour of precursor is investigated by TG/DTA analysis. The change of crystallinity, microstructure and electrochemical properties of final films as the drying temperature changes are also studied by XRD, SEM and galvanostatic charge/discharge cycling test. The relationship between the discharge capacity and the drying temperature are intensively investigated in this work.

  • PDF

A Study on the Deposition Conditions of the TiNi Thin Film by DC Magnetron Sputtering (DC 마그네트론 스퍼터링법에 의해 제조한 TiNi 박막의 증착조건에 관한 연구)

  • Choi, Dae-Cheol;Han, Beom-Gyo;Nam, Tae-Hyun;Ahn, Hyo-Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.4
    • /
    • pp.211-217
    • /
    • 1999
  • In order to investigate the possibilities of microbatteries using TiNi type metal hydride, TiNi films were prepared by DC magnetron sputtering. The films were deposited under various Ar flow rates, DC powers and target-to-substrate distances to find the optimum sputtering conditions. The deposition rate of TiNi thin film increased by increasing the DC power and by decreasing the Ar flow rate and target-to-substrate distance. The chemical composition of the film changed as a target-to-substrate distance. The crystal structure of the film was amorphous state just after deposition and changed to crystalline by vacuum heat treatment.

  • PDF