• 제목/요약/키워드: microarray data analysis

검색결과 326건 처리시간 0.021초

Network-based Microarray Data Analysis Tool

  • Park, Hee-Chang;Ryu, Ki-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.53-62
    • /
    • 2006
  • DNA microarray data analysis is a new technology to investigate the expression levels of thousands of genes simultaneously. Since DNA microarray data structures are various and complicative, the data are generally stored in databases for approaching to and controlling the data effectively. But we have some difficulties to analyze and control the data when the data are stored in the several database management systems or that the data are stored to the file format. The existing analysis tools for DNA microarray data have many difficult problems by complicated instructions, and dependency on data types and operating system. In this paper, we design and implement network-based analysis tool for obtaining to useful information from DNA microarray data. When we use this tool, we can analyze effectively DNA microarray data without special knowledge and education for data types and analytical methods.

  • PDF

Web-based DNA Microarray Data Analysis Tool

  • Ryu, Ki-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1161-1167
    • /
    • 2006
  • Since microarray data structures are various and complicative, the data are generally stored in databases for approaching to and controlling the data effectively. But we have some difficulties to analyze and control the data when the data are stored in the several database management systems. The existing analysis tools for DNA microarray data have many difficult problems by complicated instructions, and dependency on data types and operating system, and high cost, etc. In this paper, we design and implement the web-based analysis tool for obtaining to useful information from DNA microarray data. When we use this tool, we can analyze effectively DNA microarray data without special knowledge and education for data types and analytical methods.

  • PDF

Veri cation of Improving a Clustering Algorith for Microarray Data with Missing Values

  • Kim, Su-Young
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.315-321
    • /
    • 2011
  • Gene expression microarray data often include multiple missing values. Most gene expression analysis (including gene clustering analysis); however, require a complete data matric as an input. In ordinary clustering methods, just a single missing value makes one abandon the whole data of a gene even if the rest of data for that gene was intact. The quality of analysis may decrease seriously as the missing rate is increased. In the opposite aspect, the imputation of missing value may result in an artifact that reduces the reliability of the analysis. To clarify this contradiction in microarray clustering analysis, this paper compared the accuracy of clustering with and without imputation over several microarray data having different missing rates. This paper also tested the clustering efficiency of several imputation methods including our propose algorithm. The results showed it is worthwhile to check the clustering result in this alternative way without any imputed data for the imperfect microarray data.

arraylmpute: Software for Exploratory Analysis and Imputation of Missing Values for Microarray Data

  • Lee, Eun-Kyung;Yoon, Dan-Kyu;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • 제5권3호
    • /
    • pp.129-132
    • /
    • 2007
  • arraylmpute is a software for exploratory analysis of missing data and imputation of missing values in microarray data. It also provides a comparative analysis of the imputed values obtained from various imputation methods. Thus, it allows the users to choose an appropriate imputation method for microarray data. It is built on R and provides a user-friendly graphical interface. Therefore, the users can easily use arraylmpute to explore, estimate missing data, and compare imputation methods for further analysis.

Exploratory Data Analysis for microarray experiments with replicates

  • Lee, Eun-Kyung;Yi, Sung-Gon;Park, Tae-Sung
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.37-41
    • /
    • 2005
  • Exploratory data analysis(EDA) is the initial stage of data analysis and provides a useful overview about the whole microarray experiment. If the experiments are replicated, the analyst should check the quality and reliability of microarray data within same experimental condition before the deeper statistical analysis. We shows EDA method focusing on the quality and reproducibility for replicates.

  • PDF

Xperanto: A Web-Based Integrated System for DNA Microarray Data Management and Analysis

  • Park, Ji Yeon;Park, Yu Rang;Park, Chan Hee;Kim, Ji Hoon;Kim, Ju Ha
    • Genomics & Informatics
    • /
    • 제3권1호
    • /
    • pp.39-42
    • /
    • 2005
  • DNA microarray is a high-throughput biomedical technology that monitors gene expression for thousands of genes in parallel. The abundance and complexity of the gene expression data have given rise to a requirement for their systematic management and analysis to support many laboratories performing microarray research. On these demands, we developed Xperanto for integrated data management and analysis using user-friendly web-based interface. Xperanto provides an integrated environment for management and analysis by linking the computational tools and rich sources of biological annotation. With the growing needs of data sharing, it is designed to be compliant to MGED (Microarray Gene Expression Data) standards for microarray data annotation and exchange. Xperanto enables a fast and efficient management of vast amounts of data, and serves as a communication channel among multiple researchers within an emerging interdisciplinary field.

Metastasis Related Gene Exploration Using TwoStep Clustering for Medulloblastoma Microarray Data

  • Ban, Sung-Su;Park, Hee-Chang
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.153-159
    • /
    • 2005
  • Microarray gene expression technology has applications that could refine diagnosis and therapeutic monitoring as well as improve disease prevention through risk assessment and early detection. Especially, microarray expression data can provide important information regarding specific genes related with metastasis through an appropriate analysis. Various methods for clustering analysis microarray data have been introduced so far. We used twostep clustering fot ascertain metastasis related gene through t-test. Through t-test between two groups for two publicly available medulloblastoma microarray data sets, we intended to find significant gene for metastasis. The paper describes the process in detail showing how the process is applied to clustering analysis and t-test for microarray datasets and how the metastasis-associated genes are explorated.

  • PDF

효율적 구조 학습 알고리즘과 데이타 차원축소를 통한 베이지안망 기반의 마이크로어레이 데이타 분석법 (A Method for Microarray Data Analysis based on Bayesian Networks using an Efficient Structural learning Algorithm and Data Dimensionality Reduction)

  • 황규백;장정호;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권11호
    • /
    • pp.775-784
    • /
    • 2002
  • DNA chip 기술에 의해 얻어지는 마이크로어레이(microarray) 데이타는 세포나 조직 내의 수천 개 유전자의 발현도(expression level)를 한번에 측정한 것으로, 유전자 발현 양상에 기반한 암의 진단, 유전자의 기능 예측 등에 이용되고 있다. 다양한 데이타 분석 기법들 중 베이지안망(Bayesian network)은 데이타의 각 속성들간의 관계를 그래프 형태로 표현할 수 있는 특징을 가지고 있다. 이는 마이크로어레이 데이타의 분석을 통해 여러 유전자와 조직의 특성(암의 종류 등) 사이의 관계를 밝히는데 유용하다 하지만 대부분의 마이크로어레이 데이타는 sparse data로 베이지안망을 비롯한 각종 분석 기법의 적용을 어렵게 하고 있다. 본 논문에서는 베이지안망에 기반한 마이크로어레이 데이타 분석을 위해 효율적 구조 학습 알고리즘과 데이타 차원 축소를 이용한다. 제시되는 분석법은 실제 마이크로어레이 데이타인 NC160 data set에 적용되었으며, 그 유용성은 데이타로부터 학습된 베이지안망이 실제 생물학적으로 알려진 사실들을 어느 정도 정확하게 표현하는지에 의해 평가되었다.

되돌림설계를 이용한 마이크로어레이 실험 자료의 분석 (Statistical Analysis of a Loop Designed Microarray Experiment Data)

  • 이선호
    • 응용통계연구
    • /
    • 제17권3호
    • /
    • pp.419-430
    • /
    • 2004
  • 마이크로어레이 기술은 한번에 수만 개의 유전자를 동시에 분석할 수 있는 고효율, 고가의 새로운 연구 도구로 자리잡았으며 마이크로어레이 실험 자료의 올바른 분석을 위해서는 실험 목적에 맞는 실험계획법의 확립과 통계분석법의 적용이 중요하다 본 논문에서는 마이크로어레이 자료에서 여러 군 사이에서 발현의 차이를 보이는 유전자를 찾을 수 있는 되돌림 설계를 소개하고 ANOVA 모형을 이용하여 분석하는 방법을 제시한다. 연세대학교 암전이 연구센터의 되돌림 설계를 이용한 백혈병 자료를 MA-ANOVA(Wu et. al.(2003))를 이용하여 분석하였다

전산생물학을 이용한 마이크로어레이의 유전자 발현 데이터 분석 및 유형 분류 기법 (Analysis and Subclass Classification of Microarray Gene Expression Data Using Computational Biology)

  • 유창규;이민영;김영황;이인범
    • 제어로봇시스템학회논문지
    • /
    • 제11권10호
    • /
    • pp.830-836
    • /
    • 2005
  • Application of microarray technologies which monitor simultaneously the expression pattern of thousands of individual genes in different biological systems results in a tremendous increase of the amount of available gene expression data and have provided new insights into gene expression during drug development, within disease processes, and across species. There is a great need of data mining methods allowing straightforward interpretation, visualization and analysis of the relevant information contained in gene expression profiles. Specially, classifying biological samples into known classes or phenotypes is an important practical application for microarray gene expression profiles. Gene expression profiles obtained from tissue samples of patients thus allowcancer classification. In this research, molecular classification of microarray gene expression data is applied for multi-class cancer using computational biology such gene selection, principal component analysis and fuzzy clustering. The proposed method was applied to microarray data from leukemia patients; specifically, it was used to interpret the gene expression pattern and analyze the leukemia subtype whose expression profiles correlated with four cases of acute leukemia gene expression. A basic understanding of the microarray data analysis is also introduced.