References
- Feten, G., Almoy, T., and Aastveit, A.H. (2005). Prediction of Missing Values in Microarray and Use of Mixed Models to Evaluate the Predictors Stat Appl Genet Mol Biol. 4, Article10
- Kim, H., Golub, G.H., and Park, H. (2005). Missing Value Estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21, 187-198 https://doi.org/10.1093/bioinformatics/bth499
- Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K, and Ishii, S. (2003). A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19, 2088-2096 https://doi.org/10.1093/bioinformatics/btg287
- Scheel, I., Aldrin, M., Glad, I., Sorum, R, Lyun, H., and Frigessi, A. . (2005). The influence of missing value imputation on detection of differentially expressed genes from microarray data. Bioinformatics 21 , 4272-4279. https://doi.org/10.1093/bioinformatics/bti708
- Troyanskaya, O., Cantor, M., Sherlock, G. Brown, P., Hastie, T.,Tibshirani, R., Botstein, D., and Altman, R. B. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520-525 https://doi.org/10.1093/bioinformatics/17.6.520
- Yoon, D., Lee, E.K., and Park, T. (2007). Robust imputation method for missing values in microarray data. BMC Bioinformatics 8, S6 https://doi.org/10.1186/1471-2105-8-6
- Wang, D., Lv, Y., Guo, Z., Li, X., Li, Y., Zhu, J., Yang, D., Xu, J., Wang C., Rao, S. and Yang, B. (2006). Effects of replacing the unreliable cDNA microarray measurements on the disease classification based on gene expression profiles and functional modules. Bioinformatics 22, 2883-2889 https://doi.org/10.1093/bioinformatics/btl339