• 제목/요약/키워드: micro-tensile strength

검색결과 328건 처리시간 0.023초

가황 천연고무의 인장강도에 미치는 온도의 영향 (Temperature Effect on Tensile Strength of Filled Natural Rubber Vulcanizates)

  • 고영춘;박병호
    • Elastomers and Composites
    • /
    • 제36권4호
    • /
    • pp.255-261
    • /
    • 2001
  • Precut을 가지고 있는 고무 시편에서 서로 다른 온도에서 인장 강도의 영향을 조사하였다. 온도 조건에 따라 precut이 있는 시편과 precut이 없는 시편의 인장 강도는 서로 다른 거동을 보였다. $80^{\circ}C$에서는 임계 Precut 크기보다 더 큰 precut를 가지는 시편은 상온에서 시편보다 높은 인장 강도를 보였다. 상온에서 측정한 시편에 비하며 $80^{\circ}C$에서 측정한 시편은 잘 발달된 2차 균열들을 가지고 있는 반면, $110^{\circ}C$에서 측정한 시편의 경우 2차 균열들이 명확하게 발달하지 못하였다. 서로 다른 온도에서 인장강도의 차이는 인장시 발달된 결정화도와 균열 끝 부분에서 형성된 미세 균열 형상과 관계가 있는 것으로 보인다.

  • PDF

Using AP2RC & P1RB micro-silica gels to improve concrete strength and study of resulting contamination

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Najaf, Erfan
    • Advances in concrete construction
    • /
    • 제4권3호
    • /
    • pp.195-206
    • /
    • 2016
  • Today, application of additives to replace cement in order to improve concrete mixes is widely promoted. Micro-silica is among the best pozzolanic additives which can desirably contribute to the concrete characteristics provided it is used properly. In this paper, the effects of AP2RC and P1RB micro-silica gels on strength characteristics of normal concrete are investigated. Obtained results indicated that the application of these additives not only provided proper workability during construction, but also led to increased tensile, compressive and flexural strength values for the concrete during early ages as well as ultimate ones with the resulting reduction in the porosity lowering permeability of the micro-silica concrete. Furthermore, evaluation of microbial contamination of the mentioned gels showed the resultant contamination level to be within the permitted range.

Silica가 첨가된 지르콘 소결거동 (Sintering Behavior of Zircon with SiO2)

  • 이근봉;강종봉
    • 한국재료학회지
    • /
    • 제18권11호
    • /
    • pp.604-609
    • /
    • 2008
  • The sintering behavior of zircon with silica was investigated. Zircon with 5 vol% of sedimentation $SiO_2$ resulted in the apparent density of $4.45\;g/cm^3$, the diametral tensile strength of $12.125\;kgf/cm^2$, and the micro Vickers hardness of 1283 HV. The dissociation temperature and mechanical characteristics of the $ZrSiO_4$ were changed with different kinds of $SiO_2$. $SiO_2$ addition prevented dissociation of $ZrSiO_4$. Zircon with 5 vol% of sedimentation $SiO_2$ and with 5 vol% of fused $SiO_2$ resulted in increased diametral tensile strength and increased micro Vickers hardness by suppression of $ZrSiO_4$ dissociation and low temperature liquid $SiO_2$ formation. Zircon with fumed $SiO_2$ and quartz $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of cristobalite and quartz phase formation and high temperature liquid $SiO_2$ formation. Zircon with 10 vol% of $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of weak particle coupling due to excess formation of liquid $SiO_2$.

섬유 조합에 따른 초고성능 콘크리트의 인장거동 (Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers)

  • 최정일;고경택;이방연
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권4호
    • /
    • pp.49-56
    • /
    • 2015
  • 초고성능 콘크리트는 높은 강도와 유동성을 갖는 우수한 재료 특성을 나타내는 콘크리트이다. 그러나 고연성 시멘트 복합체에 비하여 낮은 연성을 나타낸다. 이 연구에서는 강섬유와 마이크로섬유의 조합이 초고성능 콘크리트의 인장거동에 미치는 영향을 조사하였다. 이를 위하여 강섬유와 폴리에틸렌, 폴리비닐알코올, 현무암섬유 조합에 따라 4가지 초고성능 콘크리트 배합을 결정하였고, 인장거동을 평가하기 위하여 직접인장 실험을 수행하였다. 또한 마이크로섬유가 제조과정에서 의도하지 않은 과도한 기포를 생성하는지를 확인하기 위하여 밀도실험을 수행하였다. 실험결과 인장강도가 높은 폴리에틸렌섬유는 초고성능 콘크리트의 인장거동을 향상시키는데 효과적임을 확인하였고, 현무암섬유는 초고성능 콘크리트의 균열강도 및 인장강도를 증가시키는데 효과적임을 확인하였다. 또한 마이크로섬유가 의도하지 않은 기포를 생성하지 않는다는 것도 확인하였다.

에폭시 알루미나 멀티-콤포지트의 기계적 특성연구 (Mechanical Properties of Epoxy Alumina Multi-Composites)

  • 박재준
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.796-802
    • /
    • 2016
  • In order to develop an electrical insulation material for gas GIS (insulation switch gear) spacer, 4 types of epoxy/micro-alumina (40, 50, 60, 70 wt%) composites and 9 types of epoxy/nano-alumina (1, 3, 5 g)/micro-alumina (40, 50, 60, 70 wt%) composites were prepared and tensile test was carried out. In here, nano-alumina was previously surface-treated with GDE (glycerol diglycidyl ether). As micro-alumina and GDE-treated nano-alumina contents increased, tensile strength increased and the highest value was shown in the system with 3 g GDE-treated nano-alumina.

High-Temperature Fracture Strength of a CVD-SiC Coating Layer for TRISO Nuclear Fuel Particles by a Micro-Tensile Test

  • Lee, Hyun Min;Park, Kwi-Il;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do Kyung
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.441-448
    • /
    • 2015
  • Silicon carbide (SiC) coatings for tri-isotropic (TRISO) nuclear fuel particles were fabricated using a chemical vapor deposition (CVD) process onto graphite. A micro-tensile-testing system was developed for the mechanical characterization of SiC coatings at high temperatures. The fracture strength of the SiC coatings was characterized by the developed micro-tensile test in the range of $25^{\circ}C$ to $1000^{\circ}C$. Two types of CVD-SiC films were prepared for the micro-tensile test. SiC-A exhibited a large grain size (0.4 ~ 0.6 m) and the [111] preferred orientation, while SiC-B had a small grain size (0.2 ~ 0.3 mm) and the [220] preferred orientation. Free silicon (Si) was co-deposited onto SiC-B, and stacking faults also existed in the SiC-B structure. The fracture strengths of the CVD-SiC coatings, as measured by the high-temperature micro-tensile test, decreased with the testing temperature. The high-temperature fracture strengths of CVD-SiC coatings were related to the microstructure and defects of the CVD-SiC coatings.

Evaluation of mechanical properties for high strength and ultrahigh strength concretes

  • Murthy, A. Ramachandra;Iyer, Nagesh R.;Prasad, B.K. Raghu
    • Advances in concrete construction
    • /
    • 제1권4호
    • /
    • pp.341-358
    • /
    • 2013
  • Due to fast growth in urbanisation, a highly developed infrastructure is essential for economic growth and prosperity. One of the major problems is to preserve, maintain, and retrofit these structures. To meet the requirements of construction industry, the basic information on all the mechanical properties of various concretes is essential. This paper presents the details of development of various concretes, namely, normal strength concrete (around 50 MPa), high strength concrete (around 85 MPa) and ultra high strength concrete (UHSC) (around 120 MPa) including their mechanical properties. The various mechanical properties such as compressive strength, split tensile strength, modulus of elasticity, fracture energy and tensile stress vs crack width have been obtained from the respective test results. It is observed from the studies that a higher value of compressive strength, split tensile strength and fracture energy is achieved in the case of UHSC, which can be attributed to the contribution at different scales viz., at the meso scale due to the fibers and at the micro scale due to the close packing of grains which is on account of good grading of the particles. Micro structure of UHSC mix has been examined for various magnifications to identify the pores if any present in the mix. Brief note on characteristic length and brittleness number has been given.

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

고기능 소재용 마이크로 인장시험기 개발 (Development of Micro Tensile Tester for High Functional Materials)

  • 최현석;한창수;최태훈;이낙규;임성주;박훈재;김승수;나경환
    • 소성∙가공
    • /
    • 제11권7호
    • /
    • pp.561-568
    • /
    • 2002
  • Micro tensile test is the most direct and convenient method to measure material properties such as Young's modulus and fracture strength. It, however, needs more accurate measurement system, mote stable and repetitive alignment and more sensitive gripping than conventional tensile test. Many researchers have put their effort on overcoming these difficulties for tile development of micro tensile tester, fabricating micro specimens of functional materials and measuring their properties. This paper will review the related vigorous researches over the world in the recent decade and explain how to apply them to a design of the fester which is under our own development.

친환경 GIS용 전력기기의 적용을 위한 에폭시 이종무기물 복합재료의 전기적, 기계적 특성 (Electrical and Mechanical Properties of Epoxy/Heterogeneous Inorganic Composites Materials for the Application of Electric Power GIS Appliances)

  • 박재준
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1633-1640
    • /
    • 2018
  • Epoxy resin is a polar thermosetting polymer that is widely employed in different branches of industry and everyday life, due to their stable physical and chemical properties. Of all the polymer materials currently being used in the electrical insulation industry, epoxy resin is the most widely used kind, chosen as the base polymer material in the present study. Composites were prepared according to the mixing ratio (MS: MA, 1: 9, 3: 7, 5: 5, 7: 3, 9: 1)of mixture for Heterogeneous Minerals(Micro Silica:MS, Micro Alumina:MA) (MS+MA). We have investigated for AC electrical insulation breakdown characteristics and the dielectric properties (permittivity, dielectric loss, and conductivity) with frequency changes. The electrical AC insulation breakdown performance was improved with the increase of the mixing ratio of MS according to heterogeneous mineral material mixture(MS+MA). As Dielectric properties, the dielectric constant and dielectric loss increased with decreasing frequency and decreased with increasing MS content ratio of heterogeneous mineral mixture. Tensile strength and flexural strength according to the mixing ratio (MS + MA) of epoxy / heterogeneous mineral mixture were studied by mechanical properties. The performance of mechanical tensile and flexural strength was significantly improved as the fill contents ratio of MS increased.