• Title/Summary/Keyword: micro-stochastic simulation

Search Result 7, Processing Time 0.019 seconds

Numerical Simulation of Tribological Phenomena Using Stochastic Models

  • Shimizu, T.;Uchidate, M;Iwabuchi, A.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.235-236
    • /
    • 2002
  • Tribological phenomena such as wear or transfer are influenced by various factors and have complicated behavior. Therefore, it is difficult to predict the behavior of the gribological phenomena because of their complexity. But, those tribological phenomena can be considered simply as to transfer micro material particles from the sliding interface. Then, we proposed the numerical simulation method for tribological phenomena such as wear of transfer using stochastic process models. This numerical simulation shows the change of the 3-D surface topography. In this numerical simulation, initial 3-D surface toughness data are generated by the method of non-causal 2-D AR (autoregressive) model. Processes of wear and transfer for some generated initial 3-D surface data are simulated. Simulation results show successfully the change of the 3-D surface topography.

  • PDF

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

Thermal Transfer Analysis of Micro Flow Sensor using by Markov Chain MCM (Markov 연쇄 MCM을 이용한 마이크로 흐름센서 열전달 해석)

  • Cha, Kyung-Hwan;Kim, Tae-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2253-2258
    • /
    • 2008
  • To design micro flow sensor varying depending on temperature of driving heater in the detector of Oxide semiconductor, Markov chain MCM(MCMCM), which is a kind of stochastic and microscopic method, was introduced. The formulation for the thermal transfer equation based on the FDM to obtain the MCMCM solution was performed and investigated, in steady state case. MCMCM simulation was successfully applied, so that its application can be expanded to a three-dimensional model with inhomogeneous material and complicated boundary.

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

On behavior of settling heavy particles in isotropic turbulence (등방성 난류에서 침강하는 무거운 입자의 거동)

  • Jung, Jae-Dal;Yeo, Kyoung-Min;Lee, Chang-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.437-440
    • /
    • 2006
  • Particle suspension is frequently observed in many natural flows such as in the atmosphere and the ocean as well as in various engineering flows. Recently, airborne micro or nano-scale particles in atmosphere attract much attention from environmental society since small particle cause serious environmental problems in the industrialized areas. Also, the characteristics of such heavy particles' behavior is quite different from its fluid particles because the inertia force and buoyance force acting on the heavy particles are different than those acting on fluid particles. Therefore, our studies is to investigate the characteristics of the behavior of heavy particles considering the inertia effect with or without gravity effect, but do not consider modification of turbulence by the particles, that is one-way interaction. We carried out direct numerical simulation of isotropic turbulence with particles under the Stokes drag assumption for a spherical particle. These results can be used in the development of a stochastic model for predicting particle's behavior.

  • PDF

Bus stop passenger waiting simulation considering transfer passengers: A case study at Cheongju Intercity Bus Terminal (환승객을 고려한 버스 정류장 승객 대기 시뮬레이션: 청주 시외 버스 터미널 정류장 사례 연구)

  • Lee, Jongsung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.217-228
    • /
    • 2021
  • After the integrated fare system has been applied, public transportation and transfer traffic increased. As a result, transfer passengers must be considered in the operation of the bus. Although previous studies have limitations due to utilizing deterministic mathematical models, which fails to reflect the stochastic movements of passengers and buses, in this study, a more realistic bus stop micro-simulation model is proposed. Based on the proposed simulation model, we represent the relationship between bus arrival interval and passenger wait time as a regression model and empirically show the differences between the cases with and without transfer passengers. Also, we propose a method converting passenger waiting time to cost and find optimal bus arrival interval based on the converted cost. It is expected the proposed method enables bottom-up decision making reflecting practical situation.

Comparison of Delay Estimates for Signalized Intersection (신호교차로 지체 산정 비교)

  • Jo, Jun-Han;Jo, Yong-Chan;Kim, Seong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • In this paper, the primary objective of the research are to review the methods currently avaliable for estimating the delay incurred by vehicles at signalized intersections. The paper compares the delay estimates from a deterministic queueing model, a model based on shock wave theory , the steady-state Webster model, the queue-based models defined in the 1994 and 2001 version of the High way Capacity Manual, in addition to the delays estimated from the TRANSYT-7F macroscopic simulation and NETSIM microscopic simulation. More especially, this paper is to compare the delay estimates obtained using macroscopic and microscopic simulation tools against state-of-the practice analytical models that are derived from deterministic queueing and shock wave analysis theory. The results of the comparisons indicate that all delay models produce relatively similar results for signalized intersections with low traffic demand, but that increasing differences occur as the traffic demand approaches saturation. In particular, when the TRANSYT-7F and NETSIM are compared, it is highly differences as approach for traffic condition to over-saturation. Also, the NETSIM microscopic simulation is the lowest estimates among the various models.