DOI QR코드

DOI QR Code

Bus stop passenger waiting simulation considering transfer passengers: A case study at Cheongju Intercity Bus Terminal

환승객을 고려한 버스 정류장 승객 대기 시뮬레이션: 청주 시외 버스 터미널 정류장 사례 연구

  • Lee, Jongsung (Department of Industrial and Management Engineering, Korea National University of Transportation)
  • 이종성 (한국교통대학교 산업경영공학과)
  • Received : 2021.01.05
  • Accepted : 2021.04.20
  • Published : 2021.04.28

Abstract

After the integrated fare system has been applied, public transportation and transfer traffic increased. As a result, transfer passengers must be considered in the operation of the bus. Although previous studies have limitations due to utilizing deterministic mathematical models, which fails to reflect the stochastic movements of passengers and buses, in this study, a more realistic bus stop micro-simulation model is proposed. Based on the proposed simulation model, we represent the relationship between bus arrival interval and passenger wait time as a regression model and empirically show the differences between the cases with and without transfer passengers. Also, we propose a method converting passenger waiting time to cost and find optimal bus arrival interval based on the converted cost. It is expected the proposed method enables bottom-up decision making reflecting practical situation.

버스카드를 활용한 통합 요금제 시행 이 후 대중교통 통행량 및 환승 통행량은 증가하였다. 이에 따라 버스운영에 있어서 환승객을 고려하는 것은 보다 중요해졌다. 기존 연구들에서는 환승객을 고려할 때 결정적 수리모델을 제안하여 승객과 버스의 확률적인 움직임을 반영하지 못하는 한계가 있었으나 본 연구에서는 미시 시뮬레이션 모델을 바탕으로 하여 보다 실제적인 버스 정류장 모델을 제안하였다. 제안한 시뮬레이션 모델을 기반으로 버스 도착 간격과 승객 대기 시간의 관계를 회귀 모델로 표현하였으며 환승객을 고려할 때와 고려하지 않을 때의 차이를 실증적으로 검증하였다. 또한 승객 대기 시간을 비용으로 변환하는 방법을 제안하고 이를 바탕으로 하여 최적 버스 도착 간격을 제안하였다. 연구에서 제안한 방법을 활용하면 버스 운영에 있어서 보다 현실을 반영한 상향식 의사결정을 가능하게 해줄 것으로 기대된다.

Keywords

References

  1. E. Kim, E. Shon & J. Kim. (2020). A study on Problems and Improvement Plan of the Integrated Transfer Fare System - Focusing of Gyeonggi Province. Gyeonggi Research Institute (GRI), 22(1), 251-271.
  2. O. Ibarra-Rojas, F. Delgado, R. Giesen & J. Munoz. (2015). Planning, operation, and control of bus transport systems: A literature review Transportation Research Part B: Methodological, 77, 38-75. https://doi.org/10.1016/j.trb.2015.03.002
  3. M. Takamatsu & A. Taguchi. (2020). Bus timetable design to ensure smooth transfers in areas with low-frequency public transportation services Transportation Science, 54(5), 1238-1250. https://doi.org/10.1287/trsc.2019.0918
  4. J. Fonseca, E. van der Hurk, R. Roberti & A. Larsen. (2018). A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling. Transportation Research Part B: Methodological, 109, 128-149. https://doi.org/10.1016/j.trb.2018.01.012
  5. Y. Wang, D. Li & Z. Cao. (2020). Integrated timetable synchronization optimization with capacity constraint under time-dependent demand for a rail transit network. Computers and Industrial Engineering, 142(February), 106374. https://doi.org/10.1016/j.cie.2020.106374
  6. R. Espino & C. Roman. (2020). Valuation of transfer for bus users: The case of Gran Canaria. Transportation Research Part A: Policy and Practice, 137, 131-144. https://doi.org/10.1016/j.tra.2020.05.003
  7. T. Toledo, O. Cats, W. Burghout & H. Koutsopoulos. (2010). Mesoscopic simulation for transit operations. Transportation Research Part C: Emerging Technologies, 18(6), 896-908. https://doi.org/10.1016/j.trc.2010.02.008
  8. S. Mo, Z. Bao, B. Zheng & Z. Peng. (2020) Towards an Optimal Bus Frequency Scheduling: When the Waiting Time Matters. IEEE Transactions on Knowledge and Data Engineering, 4347(c), 1-14.
  9. S. Berrebi, K. Watkins & J. Laval. (2015). A real-time bus dispatching policy to minimize passenger wait on a high frequency route. Transportation Research Part B: Methodological, 81, 377-389. https://doi.org/10.1016/j.trb.2015.05.012
  10. M. Asgharzadeh & Y. Shafahi. (2017). Real-time bus-holding control strategy to reduce passenger waiting time. Transportation Research Record, 2647(1), 9-16. https://doi.org/10.3141/2647-02
  11. S. O'Dell & N. Wilson. (1999). Optimal Real-Time Control Strategies for Rail Transit Operations During Disruptions. Berlin, Heidelberg: Springer.
  12. P. Senevirante. (1990) Analysis of On-Time Performance of Bus Services Using Simulation. Journal of Transportation Engineering, 116(4), 517-531. https://doi.org/10.1061/(ASCE)0733-947X(1990)116:4(517)
  13. M. Ruiz, J. Segui-Pons & J. Mateu-LLado. (2017). Improving Bus Service Levels and social equity through bus frequency modelling Journal of Transport Geography, 58, 220-233. https://doi.org/10.1016/j.jtrangeo.2016.12.005
  14. M. Nesheli & A. Ceder. (2015). A robust , tactic-based, real-time framework for public-transport transfer synchronization. Transportation Research Part C: Emerging Technologies, 60, 105-123. https://doi.org/10.1016/j.trc.2015.08.008
  15. H. Manasra & T. Toledo. (2019). Optimization-based operations control for public transportation service with transfers. Transportation Research Part C: Emerging Technologies, 105, 456-467. https://doi.org/10.1016/j.trc.2019.06.011
  16. Y. Lee, H. Jo, Y. Kim, G. An & S. Bae. (2000). An Opportunity Cost Based Headway Algorithm in Bus Operation. Journal of Korean Society of Transportation, 18(3), 43-54.
  17. H. Lee, J. Park, S. Jo & B. Yun. (2006). Development of Optimal Bus Scheduling Algorithm with Multi-constraints. Journal of Korean Society of Transportation, 24(7), 129-138.
  18. W. Kim, B. Son, J. Chung & J. Lee. (2008). Development of Real-Time Optimal Bus Scheduling Models. JOURNAL OF THE KOREAN SOCIETY OF CIVIL ENGINEERS D, 28(5D), 587-595.
  19. K. Gkiotsalitis, O. Eikenbroek, & O. Cats. (2020). Robust Network-Wide Bus Scheduling with Transfer Synchronizations. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4582-4592. https://doi.org/10.1109/tits.2019.2941847
  20. P. Shang, R. Li, Z. Liu, K. Xian & J. Guo. (2018). Timetable Synchronization and Optimization Considering Time-Dependent Passenger Demand in an Urban Subway Network, Transportation Research Record, 2672(8), 243-254. https://doi.org/10.1177/0361198118772958
  21. M. Abdolmaleki, N. Masoud & Y. Yin. (2020). Transit timetable synchronization for transfer time minimization. Transportation Research Part B: Methodological, 131, 143-159. https://doi.org/10.1016/j.trb.2019.12.002
  22. J. Chu, K. Korsesthakarn, Y. Hsu & H. Wu. (2019). Models and a solution algorithm for planning transfer synchronization of bus timetables. Transportation Research Part E: Logistics and Transportation Review, 131(1), 247-266. https://doi.org/10.1016/j.tre.2019.10.001
  23. G. Kim. (2014). Transit Patterns Analysis in Bus Routes using Large Volume Transportation Card Data, Chungbuk National University.
  24. M. Stephens. (1979). The Anderson-Darling statistic, STANFORD UNIV CA DEPT OF STATISTICS.
  25. OptTek Systems. (2020). The world's leading simulation optimization engine https://www.opttek.com/products/optquest/
  26. The AnyLogic Company. (2020). Anylogic: Simulation Modeling Software Tools & Solutions for Business. https://www.anylogic.com/
  27. S. Son, G. Choe & J. Yu. (2007). An Estimation of Generalized Cost for Transit Assignment. Journal of Korean Society of Transportation, 25(2), 121-132.
  28. Minimum Wage Commission. (2020). https://www.minimumwage.go.kr/index.jsp
  29. yesco. (2020). https://www.lsyesco.com/citygas/gas_cng_03.asp
  30. Cheongju City Bus Information System. (2020). https://www.dcbis.go.kr/.
  31. Ministry of Employment and Labor. (2020). https://www.work.go.kr/seekWantedMain.do.
  32. W. Son, T. Ahn & W. Lee. (2017). The Method to Converge of Public Transportation Information in Domestic and Foreign. Journal of The Korea Convergence Society, 8(3), 41-48. https://doi.org/10.15207/JKCS.2017.8.3.041