• Title/Summary/Keyword: micro-sphere

Search Result 69, Processing Time 0.026 seconds

Dielectric Micro-sphere Trapping with Gradient Force and Scattering Force of Laser Beam (레이저 광속의 물매힘과 산란힘을 이용한 유전체 미세구의 포획)

  • 전형수;이재형;장준성
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.228-229
    • /
    • 2000
  • 1970년 Ashkin이 레이저 광압을 이용하여 수 마이크로미터 크기(micrometer sized)의 유전체를 광속의 진행 방향으로 가속시킴과 동시에 광속축(beam axis)방향으로 입자를 끌어당기는데 성공함으로써 레이저를 이용한 미세구(micro-particle) 의 포획 및 조작에 대한 연구와 실험이 시작되었다$^{[1]}$ . 이후에 많은 사람들에 의해 연구가 활발히 이루어졌으며$^{[2]~[7]}$ , 이러한 레이저를 이용한 미세구의 포획방법은 광집게(optical tweezer)로써 생물학과 물리학 분야에서의 높은 가능성 때문에 지금도 연구가 계속되고 있다. (중략)

  • PDF

Performance Analysis of a Linear Micro-actuator Operated by Radiometric Phenomena in Rarefied Gas Flow Field (희박기체 상태의 라디오미터릭 효과에 의해 구동되는 선형 마이크로 액추에이터의 성능해석)

  • 황영규;허중식
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1394-1405
    • /
    • 2002
  • The performance of micro-actuators utilizing radiometric forces are studied numerically. The Knudsen number based on gas density and characteristic dimension is varied from near-continuum to highly rarefied conditions. Direct simulation Monte Carlo(DSMC) calculations have been performed to estimate the performance of the micro-actuators. In the present DSMC method, the variable hard sphere molecular model and no time counter technique are used to simulate the molecular collision kinetics. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies.

Study of micro-plastics separation from sea water with electro-magnetic force

  • Nomura, Naoki;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.10-13
    • /
    • 2021
  • The method of removing micro-plastics from sea water has been developed using electro-magnetic force. Plastics are difficult to decompose and put a great load on the marine environment. Especially a plastic with a size of 5 mm or less is defined as micro-plastic and are carried by ocean currents over long distances, causing global pollution. These are not easily decomposed in the natural environment. The Lorentz force was generated in simulated sea water and its reaction force was applied to the micro-plastic to control their motion. Lorentz force was generated downward and the reaction force to the plastics was upward. The plastic used in the experiment was polystyrene with a diameter of 6 mm, and the density was 1.07 g/cm3. The polystyrene sphere levitated at the current density of 0.83 A/cm2 and the external field of 0.87T. The particle trajectory calculation was also made to design separation system using superconducting magnet.

Profile Measurements of Micro-aspheric Surfaces Using an Air-bearing Stylus with a Microprobe

  • Shibuya, Atsushi;Gao, Wei;Yoshikawa, Yasuo;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A novel scanning probe measurement system was developed to enable precise profile measurements of microaspheric surfaces. An air-bearing stylus with a microprobe was used to perform the surface profile scanning. The new system worked in a contact mode and had the capability of measuring micro-aspheric surfaces with large tilt angles and complex profiles. Due to limitations resulting from the contact mode, such as possible damage caused by the contact force and lateral resolution restrictions from the curvature of the probe tip, several system improvements were implemented. An air bearing was used to suspend the shaft of the probe to reduce the contact force, enabling fine adjustments of the contact force by changing the air pressure. The movement of the shaft was measured by a linear encoder with a scale attached to the actual shaft to avoid Abbe errors. A $50-{\mu}m-diameter$ glass sphere was bonded to the tip of the probe to improve the lateral resolution of the system. The maximum contact force of the probe was 10 mN. The shaft was capable of holding the probe continuously if the contact force was less than 40 mN, and the resolution of the probe could be as high as 10 nm, The performance of the new scanning probe measurement system was verified by experimental data.

Improvement of Electrical and Thermal Characteristics of Nano-Micro Epoxy Composite

  • Cho, Sung-Hoon;Kim, Yu-Min;Kwon, Jung-Hun;Lim, Kee-Joe;Jung, Eui-Hwan;Lee, Hung-Kyu;Shin, Pan-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.160-163
    • /
    • 2011
  • Polymer nanocomposite has been attracting more attention as a new insulation material because homogeneous dispersion of nano-sized inorganic fillers can improve various properties significantly. In this paper, various kinds of epoxy-based nanocomposites were made, and the AC breakdown strengths of Nano filler and micro-$SiO_2$ filler mixtures of epoxy-based composites were analyzed using sphere-to-sphere electrodes. Moreover, nano- and microfiller combinations were investigated as an approach to practical application of nanocomposite insulation materials. Its composition ratio was 100 (resin):82 (hardener):1.5 (accelerator). AC breakdown tests were performed at room temperature ($25^{\circ}C$), $80^{\circ}C$, and $100^{\circ}C$ in the vicinity of $T_g$ ($90^{\circ}C$). Thermal conductivity was measured using TC-30.

A Measuring Method for 3-DOF Displacement by Using Spherical Reflector (구면 반사체를 이용한 3 자유도 변위 측정 기법)

  • Kwon, Ki-Hwan;Moon, Hong-Kie;Cho, Nahm-Gyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2687-2694
    • /
    • 2002
  • A precision displacement measuring system is proposed, which can detect the 3-DOF translational motions of precision positioning devices. The optical system, which is composed of two diode-laser sources and two quadratic PSDs, is adapted to detect the position of the spherical reflector usually mounted on the platform of positioning devices. Each of the laser beams from diode-laser sources is reflected at the highly reflective surface of the sphere; hence, the 3-dimensional position of the sphere causes the directional change of the reflected beams, which is detected by the PSDs. In this paper, we define the relationships between the output values of the two PSDs and the 3-DOF translational motions of the sphere. Based on a deduced measurement model, we perform measurement simulation and evaluate the performance of the proposed measurement system: linearity, sensitivity, measuring range, and measurement error. The results show that the proposed measuring method is very useful for the measurement of the precision displacement of 3-DOF micro motions.

Numerical Analysis on Thermal Transpiration Flows for a Micro Pump (열천이 현상을 이용한 마이크로 펌프내의 희박기체유동 해석)

  • Heo, Joong-Sik;Lee, Jong-Chul;Hwang, Young-Kyu;Kim, Youn-J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.27-33
    • /
    • 2007
  • Rarefied gas flows through two-dimensional micro channels are studied numerically for the performance optimization of a nanomembrane-based Knudsen compressor. The effects of the wall temperature distributions on the thermal transpiration flow patterns are examined. The flow has a pumping effect, and the mass flow rates through the channel are calculated. The results show that a steady one-way flow is induced for a wide range of the Knudsen number. The DSMC(direct simulation Monte Carlo) method with VHS(variable hard sphere) model and NTC(no time counter) techniques has been applied in this work to obtain numerical solutions. A critical element that drives Knudsen compressor Is the thermal transpiration membrane. The membranes are based on aerosol or machined aerogel. The aerogel is modeled as a single micro flow channel.

A Numerical Simulation based on Cell-centered Scheme for Contractive and Dilative Motion on Axisymmetric Micro-hydro machine (셀중심법에 의한 축대칭 극소 로봇의 압축팽창운동에 대한 수치적인 연구)

  • 강효길;김문찬;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.90-97
    • /
    • 2004
  • Flow mechanism of contractive and dilative motion is numerically investigated to obtain a propulsive force in highly viscous fluid. An axisymmetric code is developed with unstructured grid system based on cell-centered scheme. It is validated by comparing with the results of Stokes approximation for the problem of uniform flow past a sphere in low Reynolds number(R$_{n}$=1). The validated code is applied to the simulation of contractive and dilative periodic motion of body whose results are quantitatively compared with the two dimensional case. In order to investigate the grid dependency, two different grids are applied to the present computations. The present study provides key information for the development of an axisymmetric Micro-hydro-robot.t.

A Study on the Noise Performance of Silencer Fused with Hole-Cavity Resonance Technology and Micro-Sphere Stainless Chip Sintering Technology (Hole-Cavity 공명기술과 미세공 스테인레스칩 소결 융합 소음기의 소음성능에 관한 연구)

  • Cho, Dong-Hyun;BacK, Nam-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.101-108
    • /
    • 2019
  • In this study, the hole-cavity resonance technology and the micro pore stainless chip sintering technology were fused to develop silencers with excellent noise attenuation performance even at fluid pressures exceeding 30 bar for the first time at home and abroad. As a result of this study, the noise attenuation performance was greatly improved as reflection, loss, and resonance were made to occur thousands of times simultaneously when fluids pass through the sintered micro pore stainless steel chip sound absorber. The noise of the gas emitted from the bomb without the silencer was shown to be 125dB. And noise test conducted after installation of the silencer showed the noise of 67dB. Given the study results, the amount of noise was greatly reduced in the sintered silencer.

Structural analysis of trabecular bone using Automatic Segmentation in micro-CT images (마이크로 CT 영상에서 자동 분할을 이용한 해면뼈의 형태학적 분석)

  • Kang, Sun-Kyung;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.342-352
    • /
    • 2014
  • This paper proposes an automatic segmentation method of cortical bone and trabecular bone and describes an implementation of structural analysis method of trabecular bone in micro-CT images. The proposed segmentation method extract bone region with binarization using a threshold value. Next, it finds adjacent contour lines from outer boundary line into inward direction and sets candidate regions of cortical bone. Next it remove cortical bone region by finding the candidate cortical region of which the average pixel value is maximum. We implemented the method which computes four structural indicators BV/TV, Tb.Th, Tb.Sp, Tb.N by using VTK(Visualization ToolKit) and sphere fitting algorithm. We applied the implemented method to twenty proximal femur of mouses and compared with the manual segmentation method. Experimental result shows that the average error rates between the proposed segmentation method and the manual segmentation method are less than 3% for the four structural indicatiors. This result means that the proposed method can be used instead of the combersome and time consuming manual segmentation method.