• 제목/요약/키워드: micro-sized powder

검색결과 34건 처리시간 0.022초

Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성 (Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties)

  • 이한찬
    • 한국전기전자재료학회논문지
    • /
    • 제29권10호
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성 (Synthesis of SiC Nanoparticles by a Sol-Gel Process)

  • 정광진;배동식
    • 한국재료학회지
    • /
    • 제23권4호
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

대기압 마이크로웨이브 플라즈마를 이용한 다양한 크기의 ZnO tetrapod 합성 및 광촉매 특성 평가 (Synthesis of size-controlled ZnO tetrapods sizes using atmospheric microwave plasma system and evaluation of its photocatalytic property)

  • 허성규;정구환
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.340-347
    • /
    • 2021
  • Among various metal oxide semiconductors, ZnO has an excellent electrical, optical properties with a wide bandgap of 3.3 eV. It can be applied as a photocatalytic material due to its high absorption rate along with physical and chemical stability to UV light. In addition, it is important to control the morphology of ZnO because the size and shape of the ZnO make difference in physical properties. In this paper, we demonstrate synthesis of size-controlled ZnO tetrapods using an atmospheric pressure plasma system. A micro-sized Zn spherical powder was continuously introduced in the plume of the atmospheric plasma jet ignited with mixture of oxygen and nitrogen. The effect of plasma power and collection sites on ZnO nanostructure was investigated. After the plasma discharge for 10 min, the produced materials deposited inside the 60-cm-long quartz tube were obtained with respect to the distance from the plume. According to the SEM analysis, all the synthesized nanoparticles were found to be ZnO tetrapods ranging from 100 to 600-nm-diameter depending on both applied power and collection site. The photocatalytic efficiency was evaluated by color change of methylene blue solution using UV-Vis spectroscopy. The photocatalytic activity increased with the increase of (101) and (100) plane in ZnO tetrapods, which is caused by enhanced chemical effects of plasma process.

분말김치 저장 중 젖산균 생육에 대한 동결건조보호제 첨가 효과 (Effect of cryoprotectant agents on the growth of lactic acid bacteria during storage of powdered Kimchi)

  • 송정희;조정은;정영배;서혜영
    • 한국식품저장유통학회지
    • /
    • 제22권2호
    • /
    • pp.167-173
    • /
    • 2015
  • 동결건조보호제(glucose, maltose, lactose 및 sucrose)를 첨가한 캡슐형 분말김치를 -20, 0, 4 및 $25^{\circ}C$에서 4개월간 저장하면서 생균(젖산균)수를 측정한 결과, $-20^{\circ}C$에서 저장한 캡슐형 분말김치에서 4개월 후에도 젖산균이 7 log CFU/g 이상 유지되었으며, 동결 건조 보호제로 glucose를 첨가한 캡슐형 분말 김치의 젖산균은 대조군 보다 약 3 log CFU/g 이상 더 높았다. 4 및 $0^{\circ}C$에 저장된 캡슐형 분말 김치에서도 저장 4개월째의 젖산균수는 7~8 log CFU/g으로 유지되는 것을 확인하였다. $25^{\circ}C$에 저장된 캡슐형 분말 김치에서는 저장 10주까지는 4~5 log CFU/g으로 젖산균수가 유지되었으나, 저장 4개월 후 젖산균이 확인되지 않았다. 분말김치 내의 생균수를 7~8 log CFU/g로 4개월 이상 유지하기 위해서는 동결건조보호제(maltose 또는 glucose) 첨가 처리와 더불어 냉장 및 냉동 보관이 필수적임을 확인하였다.